Skip to main content

Application of Nanomaterials for Wood Protection

  • Chapter
  • First Online:
Emerging Nanomaterials

Abstract

Wood is a natural material that is susceptible to biodeterioration agents such as termites, insect borers, decay fungi, bacteria and also to external factors like weathering and fire. Various wood treatment methods have been developed to extend the service life of wood. Nevertheless, most of the conventional treatments are highly toxic to human and bioaccumulative. Extending the service life of wood using nanomaterials represents an attractive approach for wood protection. The mechanisms of nanomaterials do not only protect wood from biodeterioration agents, but also provide an appropriate protection against weathering and fire, and reduce impacts from abrasion and chemicals. Various nanomaterial-based methods for wood protection have been investigated, including biocide delivery systems, metal-based nanoparticles, green compounds and nanominerals. The biocide delivery system is used for controlled release of termiticides, insecticides and fungicides. Some of metal-based nanoparticles, such as nano zinc oxide and nano copper oxide, were resistant to leaching, inhibited decay fungi, harmful to termites and enhanced the photostability of wood against UV radiation. However, the potential of nanomaterials for wood preservation is not deployed on larger scale of commercial wood protection practice due to limited available information and high cost. The present chapter attempts to highlight the comprehensive development of nanomaterials for wood protection towards the sustainability of the wood-based sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adam O, Badot PM, Degiorgi F, Crini G (2009) Mixture toxicity assessment of wood preservative pesticides in the freshwater amphipod Gammarus pulex (L). Ecotoxicol Environ Saf 72:442–449

    Article  Google Scholar 

  • Akhtari M, Nicholas D (2013) Evaluation of particulate zinc and copper as wood preservatives for termite control. Eur J Wood Wood Prod 71(3):395–396. https://doi.org/10.1007/s00107-013-0690-7

    Article  CAS  Google Scholar 

  • Akhtari M, Ghorbani M, Taghiyari HR (2015) Study on the physical and mechanical properties of paulownia wood impregnated with nanosilver and nanocopper. J. Wood For Sci Technol 21(4):1–13

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 1:1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  CAS  Google Scholar 

  • Araby S, Philips B, Meng Q, Ma J, Laoui T, Wang CH (2021) Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos Part B Eng 212:108675

    Article  CAS  Google Scholar 

  • Arao Y, Visakh PM (2015) Flame retardancy of polymer nanocomposite. In: Flame retardants : polymer blends, composites and nanocomposites. Springer, Cham, pp 15–44

    Chapter  Google Scholar 

  • Bak M, Nėmeth R (2018) Effect of different nanoparticles treatments on the decay resistance of wood. Bioresources 13(4):7886–7899

    Article  CAS  Google Scholar 

  • Bari E, Taghiyari HR, Schmidt O, Ghorbani A (2015) Effects of nano-clay on biological resistance of wood-plastic composite against five wood-deteriorating fungi. Maderas: Ciencia y Tecnologia J 17(1):205–212

    CAS  Google Scholar 

  • Betts WD (2005) The properties and performance of coal-tar creosote as wood preservative. In: Thomson R (ed) The chemistry of wood preservation. Woodhead Publishing, Elsevier, Amsterdam, pp 117–135

    Google Scholar 

  • Bi Z, Yang F, Lei Y, Morrell JJ, Yan L (2019) Identification of antifungal compounds in konjac flying powder and assessment against wood decay fungi. Ind Crops Prod 140:111650

    Article  CAS  Google Scholar 

  • Bi W, Haitao L, David H, Milan G, Rodolfo L, Ileana C, Ottavia C, Ashraf M (2021) Effects of chemical modification and nanotechnology on wood properties. Nanotechnol Rev 10(1):978–1008. https://doi.org/10.1515/ntrev-2021-0065

    Article  CAS  Google Scholar 

  • Cai L, Jeremic D, Lim H, Kim Y (2019) β-Cyclodextrins as sustained-release carriers for natural wood preservatives. Ind Crop Prod 130:42–48

    Article  CAS  Google Scholar 

  • Cai L, Lim H, Nicholas SS, Kim Y (2020) Bio-based preservatives using methyl-β-cyclodextrin-essential oil complexes for wood protection. Int J Biol Macromol 147:420–427

    Article  CAS  PubMed  Google Scholar 

  • Can A, Sivrikaya H, Hazer B (2018) Fungal inhibition and chemical characterization of wood treated with novel polystyrene-soybean oil copolymer containing silver nanoparticles. Int Biodeterior Biodegradation 133:210–215

    Article  CAS  Google Scholar 

  • Chakra C, Raob K, Rajendar V (2017) Nanocomposites of ZnO and TiO2 have enhanced antimicrobial and antibacterial properties than their disjoint counterparts. J Nanomater Biostruct 12:185–193

    Google Scholar 

  • Chen X, Li J, Gao M, Yue L, Zhou X (2019) Fire protection properties of wood in waterborne epoxy coatings containing functionalized graphene oxide. J Wood Chem Technol 39:1–16

    Article  Google Scholar 

  • Chen T, Wu Z, Hu X, Aladejana JT, Niu M, Liu Z, Wei Q, Peng X, Xie Y, Wu B (2020) Constructing hydrophobic interfaces in aluminophosphate adhesives with reduced graphene oxide to improve the performance of wood-based boards. Compos Part B 198:108168

    Article  CAS  Google Scholar 

  • Cristea MV, Riedl B, Blanchet P (2011) Effect of addition of nanosized UV absorbers on the physico-mechanical and thermal properties of an exterior waterborne stain for wood. Prog Org Coat 72(4):755–762

    Article  CAS  Google Scholar 

  • Da Silveira AG, Santini EJ, Kulczynsk SM, Trevisan R, Wastowski AD, Gatto DA (2017) Tannic extract potential as natural wood preservative of Acacia mearnsii. Anais da Academia Brasileira de Ciĕncias 89(4):3031–3038

    Article  PubMed  Google Scholar 

  • De F, Palermo AM, Rachiele F, Nicoletta FP (2013) Preventing fungal growth in wood by titanium dioxide nanoparticles. Int Biodeterior Biodegrad 85:217–222

    Article  Google Scholar 

  • Derakhshankhah H, Sajadimajd S, Jafari S, Izadi Z, Sarvari S, Sharifi M, Falahati M, Moakedi F, Muganda WCA, Müller M, Raoufi M, Presley JF (2020) Novel therapeutic strategies for Alzheimer’s disease: implications from cell-based therapy and nanotherapy. Nanomed Nanotechnol Biol Med 24:102149. https://doi.org/10.1016/j.nano.2020.102149

    Article  CAS  Google Scholar 

  • Deraman AF, Chandren S (2019) Fire-retardancy of wood coated by Titania nanoparticles. AIP Conf Proc 2155(1):020022. https://doi.org/10.1063/1.5125526

    Article  CAS  Google Scholar 

  • Dong Y, Yan Y, Ma H, Zhang S, Li J, Xia C, Shi SQ, Cai L (2017) In-situ chemosynthesis of ZnO nanoparticles to endow wood with antibacterial and UV-resistance properties. J Mater Sci Technol 33(3):266–270

    Article  CAS  Google Scholar 

  • Efhamissi D, Ghazan M, Oladi R, Karimimazraehshahi A (2017) Penetrability of nano-wollastonite into the poplar wood and its effect on wood durability and dimensional stability. Iranian J Wood Pap Ind 8(2):267–282

    Google Scholar 

  • Esmailpour A, Taghiyari HR, Majidi R, Morrell JJ, Mohammad-Panah B (2019) Nano-wollastonite to improve fire retardancy in medium-density fibreboard (MDF) made from wood fibers and camel-thorn. Wood Mater Sci Eng:1–5. https://doi.org/10.1080/17480272.2019.1641838

  • Esmailpour A, Majidi R, Taghiyari H, Ganjkhani M, Armaki MSM, Papadopoulos A (2020a) Improving fire retardancy of beechwood by graphene. Polymers 12(2):303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esmailpour A, Taghiyari HR, Majidi R, Babaali S, Morrell JJ, Mohammadpanah B (2020b) Effects of adsorption energy on air and liquid permeability of nanowollastonite-treated medium-density fiberboard (MDF). IEEE Trans Instrum Meas 70:1. https://doi.org/10.1109/TIM.2020.3009355

    Article  Google Scholar 

  • Francés Bueno AB, Navarro Bañón L, de Morentín M, Moratalla García J (2014) Treatment of natural wood veneers with nano-oxides to improve their fire behaviour. Mater Sci Eng 64(1):12021

    Google Scholar 

  • Gablech E, Fohlerovā Z, Švec K, Zaleš F, Benada O, Kofroňovā O, Pekārkovā J, Caha O, Gablech I, Gabriel J, Drbohlavovā J (2022) Selenium nanoparticles with boron salt-based compound act synergistically against the brown-rot Serpula lacrymans. Int Biodeter Biodegr 169:105377

    Article  CAS  Google Scholar 

  • García-Ortiz V, Hernández-Soberano C, Martínez-Pacheco M, Ambriz-Parra E, Velázquez Becerra C (2020) Protective effect on wood by metabolic extracts from plan growth-promoting rhizobacteria against decay fungi. Revista Argentina De Microbiologia 52(2):164–166

    Article  PubMed  Google Scholar 

  • Haghighi Poshtiri A, Taghiyari HR, Karimi AN (2013) The optimum level of nanowollastonite consumption as fire-retardant in poplar wood (Populus nigra). Int J Nano Dimen 4:141–151

    Google Scholar 

  • Haghighi Poshtiri A, Taghiyari HR, Karimi AN (2014) Fire-retarding properties of nano-wollastonite in solid wood. Philipp Agric Sci 97(1):52–59

    Google Scholar 

  • Han X, Yin Y, Zhang Q, Li R, Junwen P (2018) Improved wood properties via two-step grafting with itaconic acid (IA) and nano-SiO2. Holzforschung 72(6):499–506. https://doi.org/10.1515/hf-2017-0117

    Article  CAS  Google Scholar 

  • Harandi D, Ahmadi H, Achachluei MM (2016) Comparison of TiO2 and ZnO nanoparticles for the improvement of consolidated wood with polyvinyl butyral against white rot. Int Biodeter Biodegr 108:142–148

    Article  CAS  Google Scholar 

  • Hassan B, Ahmed S, Kirker G, Mankowski ME, ul Misbah Haq M (2018) Synergistic effect of heartwood extracts in combination with linseed oil as wood preservatives against subterranean termite Heterotermes indicola (Blattodea: Rhinotermitidae). Environ Sci Pollut Res 27:3076–3085. https://doi.org/10.1007/s11356-019-07202-7

    Article  CAS  Google Scholar 

  • Hassani V, Taghiyari HR, Schmidt O, Maleki S, Papadopoulos A (2019) Mechanical and physical properties of oriented strand lumber (OSL): the effect of fortification level of nanowollastonite on UF resin. Polymers 11:1884. https://doi.org/10.3390/polym11111884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanpoor Tichi A, Bazyar B, Khademieslam H, Rangavar H, Talaeipour M (2019) Is wollastonite capable of improving the properties of wood-cement composite? Bioresoures 14(3):6168–6178

    Article  Google Scholar 

  • Hincapié I, Künniger T, Hischier R, Cervellati D, Nowack B, Som C (2015) Nanoparticles in facade coatings: a survey of industrial experts on functional and environmental benefits and challenges. J Nanopart Res 17(7):287

    Article  Google Scholar 

  • Hingston JA, Collins CD, Murphy RJ, Lester JN (2001) Leaching of chromated copper arsenate wood preservatives: a review. Environ Pollut 111:53–66

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Sun Z (2021) Nano CaAlCO3-layered double hydroxide-doped intumescent fire-retardant coating for mitigating wood fire hazards. J Build Eng 44:102987

    Article  Google Scholar 

  • Jafari A, Omidvar A, Rasouli D (2018) The effect of nano copper oxide on physical properties and leaching resistance of wood-polystyrene polymer. J Wood For Sci Technol 25(1):49–59

    Google Scholar 

  • Janesch J, Czabany I, Hansmann C, Mautner A, Rosenau T, Gindl-Altmutter W (2020) Transparent layer-by layer coatings based on biopolymers and CeO2 to protect wood from UV light. Prog Org Coat 138:105409

    Article  CAS  Google Scholar 

  • Kartal SN, Hwang W-J, Imamura Y, Sekine Y (2006) Effect of essential oil compounds and plant extracts on decay and termite resistance of wood. Eur J Wood Wood Prod 64(6):445–461

    Article  Google Scholar 

  • Krzyzewsky J (1987) Arsenic creosote wood preservatives. US 4656060 A.

    Google Scholar 

  • Lin LD, Chen YF, Wang SY, Tsai MJ (2009) Leachability, metal corrosion, and termite resistance of wood treated with copper-based preservatives. Int Biodeter Biodegr 63:553–538

    Article  Google Scholar 

  • Liu Y, Laks P, Heiden P (2001a) Controlled release of biocides in solid wood. I – Efficacy against brown rot wood decay fungus (Gloeophyllum trabeum). J Appl Polym Sci 86:596–607

    Article  Google Scholar 

  • Liu Y, Laks P, Heiden P (2001b) Controlled release of biocides in solid wood. II – Efficacy against Trametes versicolor and Gloeophyllum trabeum wood decay fungi. J Appl Polym Sci 86:608–614

    Article  Google Scholar 

  • Liu Y, Yan L, Heiden P, Laks P (2001c) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79(3):458–465

    Article  CAS  Google Scholar 

  • Liu Y, Laks P, Heiden P (2002) Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J Appl Polym Sci 86(3):615–621. https://doi.org/10.1002/app.10898

    Article  CAS  Google Scholar 

  • Liu Y, Laks P, Heiden P (2003) Nanoparticles for the controlled release of fungicides in wood: soil jar studies using G. Trabeum and T. Versicolor wood decay fungi. Holzforschung 57:135–139

    Article  CAS  Google Scholar 

  • Lykidis C, Bak M, Mantanis G, Nėmeth R (2016) Biological resistance of pine wood treated with nano-sized zinc oxide and zinc borate against brown-rot fungi. Eur J Wood Wood Prod 74:909–911

    Article  CAS  Google Scholar 

  • Mantanis G, Terzi E, Nami Kartal S, Papadopoulos AN (2014) Evaluation of mold, decay and termite resistance of pine wood treated with zinc- and copper-based nanocompounds. Int Biodeter Biodegr 90:140–144. https://doi.org/10.1016/j.ibiod.2014.02.010

    Article  CAS  Google Scholar 

  • Mattos BD, Magalhaes WLE (2017) Design and preparation of carbendazim-loaded alumina nanoparticles as a controlled-release biocide for wood protection. Int Biodeter Biodegr 123:174–181

    Article  CAS  Google Scholar 

  • Mohammadnia-afrouzi Y, Marzbani P, Ahmadinejad A (2014) Investigation on the weathering resistance of poplar wood impregnated with nano ZnO-AgO mixture. Adv Environ Biol 8(10):979–984

    Google Scholar 

  • Moya R, Berrocal A, Rodriguez-Zuñiga A, Vega-Baudrit J, Noguera SC (2014) Effect of silver nanoparticles on white-rot wood decay and some physical properties of three tropical wood species. Wood Fiber Sci 46(4):527–538

    CAS  Google Scholar 

  • Nagarajappa GB, Rao ANS, Pandey KK (2020) Photostability of acetylated wood coated with nano zinc oxide. Maderas. Ciencia y tecnología 22(3):365–374

    CAS  Google Scholar 

  • Nageswara Rao T, Naidu TM, Kim MS, Parvatamma B, Prashanthi Y, Heun KB (2020) Influence of zinc oxide nanoparticles and char forming agent polymer on flame retardancy of intumescent flame retardant coatings. Nanomater 10(1):42. https://doi.org/10.3390/nano10010042

    Article  CAS  Google Scholar 

  • Nine Md J, Tran Diana NH, ElMekawi A, Losic D (2017) Interlayer growth of borates for highly adhesive graphene coatings with enhanced abrasion resistance, fire-retardant and antibacterial ability. Carbon 117:252–262

    Article  Google Scholar 

  • Nyamukamba P, Okoh O, Mungondori H, Taziwa R, Zinya S (2018) Synthetic methods for titanium dioxide nanoparticles: a review. In: Itanium dioxide – material for a sustainable environment. IntechOpen, Rijeka, pp 151–1755

    Google Scholar 

  • Okyay T, Bala R, Nguyen H, Atalay R, Bayam Y, Rodrigues D (2015) Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv 5(4):2568–2575

    Article  CAS  Google Scholar 

  • Padil VVT, Akshay Kumar KP, Murugesan S, Torres-Mendieta R, Waclawek S, Cheong JY, Cernik M, Varma RS (2022) Sustainable and safer nanoclay composites for multifaceted applications. Green Chem 24(8):3081–3114

    Article  CAS  Google Scholar 

  • Pánek M, Hýsek Š, Dvořák O, Zeidler A, Oberhofnerová E, Šimůnková K, Šedivka P (2019) Durability of the exterior transparent coatings on nano-photostabilized English oak wood and possibility of its prediction before artificial accelerated weathering. Nanomater 9(11):1568

    Article  Google Scholar 

  • Papadopoulos Antonios N, Bikiaris DN, Mitropoulos AC, Kyzas GZ (2019) Nanomaterials and chemical modifications for enhanced key wood properties: a review. Nanomater 9(4):607

    Article  Google Scholar 

  • Pekārkovā J, Gablech I, Fialovā T, Bīlek O, Fohlerovā Z (2021) Modifications of Parylene by microstructures and selenium nanoparticles: evaluation of bacterial and mesenchymal stem cell viability. Front Bioeng Biotechnol 9:782799

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelto JM, Virtanen S, Munter T, Larismaa J, Jämsä S, Nikkola J (2014) Encapsulation of 3-iodo-2-propynyl N-butylcarbamate (IPBC) in polystyrene-polycaprolactone (PS/PCL) blends. J Microencapsul 31(5):415–421

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Wang Y, Zhang R, Wang W, Cao J (2021) Improvement of wood against UV weathering and decay by using plant origin substances: tannin acid and tung oil. Ind Crop Prod 168:113606

    Article  CAS  Google Scholar 

  • Peres ML, de Delucis R, de Amico A, Sandro Campos Gatto Darci A (2019) Zinc oxide nanoparticles from microwave-assisted solvothermal process: photocatalytic performance and use for wood protection against xylophagous fungus. Nanomater Nanotechnol 9:1–8

    Article  Google Scholar 

  • Rowell RM (2012) Handbook of wood chemistry and wood composites. Taylor & Francis, Boca Raton

    Google Scholar 

  • Salla J, Pandey KK, Srinivas K (2012) Improvement of UV resistance of wood surfaces by using ZnO nanoparticles. Polym Degrad Stab 97:592–596

    Article  CAS  Google Scholar 

  • Salma U, Chen N, Richter DI, Filson PB, Dawson-Andoh B, Matuana L, Heiden P (2010) Amphiphilic core/shell nanoparticles to reduce biocide leaching from treated wood 1 – leaching and biological efficacy. Macromol Mater Eng 295:442–450

    CAS  Google Scholar 

  • Santos L, da Silva D, Morari T, Galembeck F (2021) Environmentally friendly, high-performance fire retardant made from cellulose and graphite. Polymers (Basel) 13(15):2400

    Article  CAS  PubMed  Google Scholar 

  • Sequeira S, Cabrita EJ, Macedo MF (2012) Antifungals on paper conservation – overview. Int Biodeterior Biodegrad 74:67–86

    Article  CAS  Google Scholar 

  • Šimůnkovā K, Reinprect L, Nābĕlkova J, Hysek S, Kindl J, Borůvka V, Liskova T, Sabotnik J, Panek M (2021) Caffein – perspective natural biocide for wood protection against decaying fungi and termites. J Clean Prod 304:127110

    Article  Google Scholar 

  • Soltani A, Hosseinpourpia R, Adamopoulos S, Taghiyari HR, Ghaffari E (2016) Effects of heat-treatment and nano-wollastonite impregnation on fire properties of solid wood. Bioresources 11(4):8953–8967

    Article  CAS  Google Scholar 

  • Song J, Dubey B, Jang Y-C, Townsend T, Solo-Gabriele S (2006) Implication of chromium specification on disposal of discarded CCA-treated wood. J Hazard Mater 128(2–3):280–288

    Article  CAS  PubMed  Google Scholar 

  • Sørensen G, Nielsen AL, Pedersen MM, Poulsen S, Nissen H, Poulsen M, Nygaard SD (2010) Controlled release of biocide from silica microparticles in wood paint. Prog Org Coat 68(4):229–306

    Article  Google Scholar 

  • Taghiyari HR, Rangavar H, Nouri P (2013) Fire-retarding properties of nanowollastonite in MDF. Eur J Wood Wood Prod 71:537–581

    Article  Google Scholar 

  • Taghiyari HR, Bari E, Schmidt O (2014) Effects of nanowollastonite on biological resistance of medium density fibreboard against antrodia vaillantii. Eur J Wood Prod 72:399–406

    Article  CAS  Google Scholar 

  • Taghiyari HR, Kalantari A, Ghorbani M, Bavaneghi F, Akhtari M (2015) Effects of fungal exposure on air and liquid permeability of nanosilver – and nano zinc oxide-impregnated Paulownia wood. Int Biodeterior Biodegradation 105:51–57

    Article  CAS  Google Scholar 

  • Taghiyari HR, Esmailpour A, Majidi R, Morrell JJ, Mallaki M, Militz H, Papadopoulos AN (2020) Potential use of wollastonite as a filler in UF resin based medium-density fiberboard (MDF). Polymers 12:1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghiyari HR, Militz H, Antov P, Papadopoulos AN (2021a) Effects of wollastonite on fire properties of particleboard made from wood and chicken feather fibers. Coatings 11(5):518. https://doi.org/10.3390/coatings11050518

    Article  CAS  Google Scholar 

  • Taghiyari HR, Tajvidi M, Soltani A, Esmailpour A, Khodadoosti G, Jafarzadeh H, Militz H, Papadopoulos AN (2021b) Improving fire retardancy of unheated and heat-treated fir wood by nano-sepiolite. Eur J Wood Wood Prod 79(4):841–849. https://doi.org/10.1007/s00107-021-01679-1

    Article  CAS  Google Scholar 

  • Tascioglu C, Yalcin M, Sen S, Akcay C (2013) Antifungal properties of some plant extracts used as wood preservatives. Int Biodeterior Biodegradation 85:23–28

    Article  CAS  Google Scholar 

  • Tomak ED, Yazici OA, Sam ED, Gonultas O (2018) Influence of tannin containing coatings on weathering resistance of wood: combination with zinc and cerium oxide nanoparticles. Polym Degrad Stab 152:289–296

    Article  CAS  Google Scholar 

  • Tuong VM, Huyen N, Van Kien NT, NVan D (2019) Durable epoxy/ZnO coating for improvement of hydrophobicity and color stability of wood. Polymers 11:1388

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrandečić K, Ćosić J, Ilić J, Ravnjak B, Selmani A, Galić E, Pem B, Babir R, Vinković Vrček I, Vinković T (2020) Antifungal activities of silver and selenium nanoparticles stabilized with different surface coating agents. Pest Manag Sci 76(6):2021–2029

    Article  PubMed  Google Scholar 

  • Wang X, Kalali EN, Xing W, Wang D (2018) CO2 induced synthesis of Zn-Al layered double hydroxide nanostructures towards efficiently reducing fire hazards of polymeric materials. Nano Adv 3:12–17

    Article  Google Scholar 

  • Weththimuni M, Capsoni D, Malagodi M, Licchelli M (2019) Improving wood resistance to decay by nanostructured ZnO-based treatments. J Nanomater 2019:1–11

    Article  Google Scholar 

  • Wu Y, Wu X, Yang F, JYe (2020) Preparation and characterization of waterborne UV lacquer product modified by zinc oxide with flower shape no title. Polymers 12(3):668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F-L, Li X-G L, Zhu F, Lei C-L (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Du C, Hua Y, Zhang J, Peng R, Huang Q, Liu H (2019) Flame-retardant and smoke suppression properties of nano MgAl-LDH coating on bamboo prepared by an in situ reaction. J Nanomater 1:12

    Google Scholar 

  • Zhang Z, James M, Hom ND, Jovana R, Constandinos H, Miltiadis T, Nick B (2013) Biofouling resistance of titanium dioxide and zinc oxide nanoparticulate silane/siloxane exterior facade treatments. Build Environ 59:47–55. https://doi.org/10.1016/j.buildenv.2012.08.006

    Article  Google Scholar 

  • Zhou L, Yanchun F (2020) Flame-retardant wood composites based on immobilizing with chitosan/sodium phytate/nano-TiO2-ZnO coatings via layer-by-layer self-assembly. Coatings 10(3):296. https://doi.org/10.3390/coatings10030296

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tumirah Khadiran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khadiran, T., Jasmani, L., Rusli, R. (2023). Application of Nanomaterials for Wood Protection. In: Taghiyari, H.R., Morrell, J.J., Husen, A. (eds) Emerging Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-031-17378-3_7

Download citation

Publish with us

Policies and ethics