Skip to main content

Autophagy in Stem Cell Maintenance and Differentiation

  • Chapter
  • First Online:
Autophagy in Stem Cell Maintenance and Differentiation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 73))

  • 277 Accesses

Abstract

Autophagy is one of the intracellular machinery for maintaining organelle as well as physiological homeostasis in cells by clearance of cellular debris and recycling of essential raw materials. It is different from other cellular processes like apoptosis and necrosis in the sense that it acts as a double-edged sword that might lead either to survival or death based on the stimuli. There are broadly three different types of autophagy: macroautophagy, microautophagy, and chaperone mediated autophagy. Macroautophagy is one of the commonly understood forms of autophagy and has been discussed simply as autophagy throughout the chapter. The role of autophagy in stem cell maintenance and differentiation is essential as both the processes require intensive intracellular remodeling which involves a continuous cycle of synthesis and degradation of event-specific proteins. Several pathways are involved in the regulation of autophagy and vice versa in stem cells. Among them, there are master proteins mandatory for stem cell maintenance and/or differentiation reported to be directly regulating autophagy. The current chapter discusses the different signaling pathways in stem cells; regulating or being regulated by autophagy and its role in the maintenance and differentiation of various types of stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MA:

3-Methyl adenine

ADSC:

Adipose derived stem cell

ALT:

Alanine Aminotransferase

Ambra1:

Activating molecule in Beclin1-regulated autophagy protein 1

AMPK:

AMP-activated protein kinase

APJ:

Apelin receptor

ATG:

Autophagy related gene

ATP:

Adenosine triphosphate

BAT:

Brown adipose tissue

BMSC:

Bone marrow derived mesenchymal stem cells

BNIP3:

BCL2/Adenovirus E1B 19 kDa Protein Interacting Protein 3

C/EBPβ:

CCAAT-enhancer binding protein

CMA:

Chaperone mediated autophagy

CNS:

Central nervous system

CSC:

Cardiac stem cells

CSF:

Colony stimulating factor

CYLD:

Cylindromatosis

DNA:

Deoxyribo Nucleic Acid

ER:

Endoplasmic Reticulum

ESCRT:

Endosomal sorting complex required for transport

Eva1:

Eva-1 homolog A

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

FIP200:

Focal adhesion kinase family-interacting protein of 200kD

FOXO:

Forkhead box transcription factor

FRS2α:

FGF receptor substrate 2α

GATA 1:

GATA-binding factor 1

GIT1:

G-protein-coupled receptor kinase-interacting protein 1

GSK3:

Glycogen Synthase Kinase 3

HIF-1α:

Hypoxia Inducible Factor 1 alpha

HMPC:

Hematopoietic mesenchymal progenitor cells

HPC:

Hepatic progenitor cells

HSC:

Hematopoietic stem cells

HSC-70:

Heat shock Protein 70 kDa

IL-6:

Interleukin-6

ISC:

Intestinal stem cells

JNK:

C-Jun N-terminal kinase

Klf:

Kruppel-like factors

LC3:

Microtubule-associated protein 1 light chain 3 protein

LPC:

Liver Progenitor Cell

miRNA:

Micro Ribo-nucleic acid

MMP:

Matrix metalloproteinases

MSC:

Mesenchymal stem cells

mTOR:

Mammalian target of rapamycin

NBR1:

Neighbor of BRCA1 gene 1 protein

NFATc1:

Nuclear factor of activated T-cells 1

NF-κβ:

Nuclear Factor kappa light chain enhancer of activated B cells

NSC:

Neural stem cells

PE:

Phosphatidylethanolamine

PI3K:

Phosphatidylinositol—3—kinase

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PIP3:

Phosphatidylinositol 3,4,5-triphosphate

PPARγ2:

Peroxisome proliferator activated receptor gamma

RANKL:

Receptor activator of nuclear factor kappa-B ligand

RBC:

Red Blood cells

ROS:

Reactive oxygen species

SC:

Satellite cells

STAT-3:

Signal transducer and activator of transcription 3

TAB2TGF-β:

activates kinase 1 binding protein 2

TGs:

Triglycerides

TIP60:

60KDa HIV-Tat interactive protein

TNF-α:

Tumor Necrosis Factor alpha

TRAF:

Tumor necrosis factor receptor-associated factor

TUNEL:

Terminal Deoxy-nucleotidyl Transferase dUTP Nick End Labeling

ULK1:

Unc-51-like kinase 1

VPS:

Vacuolar protein sorting

VZ/SVZ:

Ventricular and subventricular zone

WAT:

White Adipose Tissue

WIPI:

WD repeat protein interacting with phosphoinositide

Wnt:

Wingless-related Integration site

References

  1. Khan I, Baig MH, Mahfooz S, Rahim M, Karacam B (2021) deciphering the role of autophagy in treatment of resistance mechanisms in Glioblastoma

    Google Scholar 

  2. Chun Y, Kim J (2018) autophagy: an essential degradation program for cellular homeostasis and life.https://doi.org/10.3390/cells7120278

  3. El-gowily AH, Abosheasha MA (2020) Differential mechanisms of autophagy in cancer stem cells: emphasizing gastrointestinal cancers, 1–12. https://doi.org/10.1002/cbf.3552

  4. Jung S, Jeong H, Yu S-W (2020) Autophagy as a decisive process for cell death. Exp Mol Med 526(52):921–930. https://doi.org/10.1038/s12276-020-0455-4

  5. Levine B, Mizushima N (2011). Autophagy in immunity and inflammation, 1–5. https://doi.org/10.1038/nature09782

  6. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910.Regulation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang NC (2020) Autophagy and stem cells: self-eating for self-renewal 8:1–11. https://doi.org/10.3389/fcell.2020.00138

    Article  Google Scholar 

  8. Castro-Obregon S (2010) The discovery of lysosomes and autophagy. Scitable by Nat Educ 3:49. https://www.nature.com/scitable/topicpage/the-discovery-of-lysosomes-and-autophagy-14199828/. Accessed August 10, 2021

  9. Turksen K (2018) Autophagy in health and disease: potential therapeutic approaches. https://books.google.co.in/books?hl=en&lr=&id=Q3xxDwAAQBAJ&oi=fnd&pg=PR5&dq=autophagy+in+health+and+disease+Kursad+Turksen&ots=h4P592smya&sig=Bj20UB_RJAH5b8OQWa3ouCjwhDo. Accessed August 10, 2021

  10. Simon H (n.d) Autophagy in myocardial differentiation and cardiac development. https://doi.org/10.1161/CIRCRESAHA.112.265157

  11. Vessoni AT, Muotri AR, Okamoto OK (2012) Autophagy in stem cell maintenance and differentiation, 21. https://doi.org/10.1089/scd.2011.0526

  12. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10:1533–1541. https://doi.org/10.1158/1535-7163.MCT-11-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sbrana FV, Cortini M, Avnet S, Perut F, Columbaro M, De Milito A, Baldini N (2016) The role of autophagy in the maintenance of stemness and differentiation of mesenchymal stem cells. Stem Cell Rev Reports, 621–633. https://doi.org/10.1007/s12015-016-9690-4

  14. Guan J, Simon AK, Prescott M, Menendez JA, Wang F, Wang C, Wolvetang E, Vazquez-martin A, Zhang J (2013) Autophagy in stem cells. Taylor Fr. 9:830–849. https://doi.org/10.4161/auto.24132

    Article  CAS  Google Scholar 

  15. Chen Q, Kang J, Fu C (2018) The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-018-0018-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Łos, Autophagy MJ (2012) Apoptosis, Mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp 611(61):43–58. https://doi.org/10.1007/S00005-012-0205-Y

  17. Coleman J, Liu R, Wang K, Kumar A (2016) Detecting apoptosis, autophagy, and necrosis, 77–92. https://doi.org/10.1007/978-1-4939-3588-8_5

  18. Rodolfo C, Di Bartolomeo S, Cecconi F (2016) Autophagy in stem and progenitor cells. Cell Mol Life Sci 73:475–496. https://doi.org/10.1007/s00018-015-2071-3

    Article  CAS  PubMed  Google Scholar 

  19. Jin M, Liu X, Klionsky DJ (2013) SnapShot: selective autophagy. Cell 152:368. https://doi.org/10.1016/J.CELL.2013.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D (2020) Selective autophagy of intracellular organelles: recent research advances. Theranostics. 11:222–256. https://doi.org/10.7150/THNO.49860

    Article  Google Scholar 

  21. Reggiori F, Komatsu M, Finley K, Simonsen A (2012) Autophagy: more than a nonselective pathway. Int J Cell Biol. https://doi.org/10.1155/2012/219625

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schuck S (2020) Microautophagy—distinct molecular mechanisms handle cargoes of many sizes. https://doi.org/10.1242/jcs.246322

  23. Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22:407–417. https://doi.org/10.1016/j.tcb.2012.05.006.Chaperone-mediated

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10. https://doi.org/10.1186/S13287-019-1165-5

  25. Dikic I (2017) Proteasomal and Autophagic degradation systems. Annu Rev Biochem 86:193–224. https://doi.org/10.1146/ANNUREV-BIOCHEM-061516-044908

    Article  CAS  PubMed  Google Scholar 

  26. Chen X, He Y, Lu (2018) Review article autophagy in stem cell biology : a perspective on stem cell self-renewal and differentiation

    Google Scholar 

  27. Boya P, Codogno P, Rodriguez-muela N (2018) Autophagy in stem cells: repair, remodelling and metabolic reprogramming, 1–14. https://doi.org/10.1242/dev.146506

  28. Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegué E (2013) FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature 494:323–327. https://doi.org/10.1038/NATURE11895

  29. Almeida CF, Fernandes SA, Ribeiro Junior AF, Keith Okamoto O, Vainzof M (2016) Muscle satellite cells: exploring the basic biology to rule them. Stem Cells Int. https://doi.org/10.1155/2016/1078686

  30. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23. https://doi.org/10.1152/PHYSREV.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Z, Yang M, Wang Y, Wang L, Jin Z, Ding L, Zhang L, Zhang L, Jiang W, Gao G, Yang J, Lu B, Cao F, Hu T (2016) Autophagy regulates the apoptosis of bone marrow-derived mesenchymal stem cells under hypoxic condition via AMP-activated protein kinase/mammalian target of rapamycin pathway 40:671–685. https://doi.org/10.1002/cbin.10604

    Article  CAS  Google Scholar 

  32. Li L, Li L, Zhang Z, Jiang Z (2015) Hypoxia promotes bone marrow-derived mesenchymal stem cell proliferation through apelin/APJ/autophagy pathway 47:362–367. https://doi.org/10.1093/abbs/gmv014

    Article  CAS  Google Scholar 

  33. Dong W, Zhang P, Fu Y, Ge J, Cheng J, Yuan H, Jiang H (2015) Roles of SATB2 in site-specific Stemness, autophagy and senescence of bone marrow mesenchymal stem cells. J Cell Physiol 230:680–690. https://doi.org/10.1002/JCP.24792

    Article  CAS  PubMed  Google Scholar 

  34. Xu F, Hua C, Tautenhahn H, Dirsch O, Dahmen U (2020) The role of autophagy for the regeneration of the aging liver

    Google Scholar 

  35. Trentesaux C, Fraudeau M, Luana C, Lemarchand J, Jacques S (2020) Essential role for autophagy protein ATG7 in the maintenance of intestinal stem cell integrity, 117. https://doi.org/10.1073/pnas.1917174117

  36. Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ, Komatsu M, Simon AK (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc Natl Acad Sci USA 107:832–837. https://doi.org/10.1073/PNAS.0913170107

  37. Moras M, Lefevre SD, Ostuni MA (2017) From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol 8:1076. https://doi.org/10.3389/FPHYS.2017.01076

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kang YA, Sanalkumar R, O'geen H, Linnemann AK, Chang CJ, Bouhassira EE, Farnham PJ, Keles S, Bresnick EH (2012) Autophagy driven by a master regulator of hematopoiesis. Mol Cell Biol 32L:226–239. https://doi.org/10.1128/MCB.06166-11

  39. Honda S, Arakawa S, Nishida Y, Yamaguchi H, Ishii E, Shimizu S (2014) Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat Commun 5:1–5. https://doi.org/10.1038/ncomms5004

    Article  CAS  Google Scholar 

  40. Zhang J, Randall MS, Loyd MR, Dorsey FC, Kundu M, Cleveland JL, Ney PA (2009) Mitochondrial clearance is regulated by Atg7-dependent and independent mechanisms during reticulocyte maturation. Blood 114:157. https://doi.org/10.1182/BLOOD-2008-04-151639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shimizu S (2018) Biological roles of alternative autophagy. Mol Cells 41:50–54. https://doi.org/10.14348/molcells.2018.2215

  42. Casares-crespo L, Calatayud-baselga I, García-corzo L, Mira H (2018) On the role of basal autophagy in adult neural stem cells and neurogenesis 12:1–9. https://doi.org/10.3389/fncel.2018.00339

    Article  CAS  Google Scholar 

  43. Lv X, Jiang H, Li B, Liang Q, Wang S, Zhao Q, JJ-S reports (n.d.) Undefined 2014, the crucial role of Atg5 in cortical neurogenesis during early brain development. Nature.Com. https://sci-hub.do/https://www.nature.com/articles/srep06010. Accessed August 11, 2021

  44. Morgado AL, Xavier JM, Dionísio PA, Ribeiro MFC, Dias RB, Sebastião AM, Solá S, Rodrigues CMP (2015) MicroRNA-34a modulates neural stem cell differentiation by regulating expression of synaptic and Autophagic Proteins, 1168–1183. https://doi.org/10.1007/s12035-014-8794-6

  45. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies FM, Rubinsztein DC (2016) Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun 7. https://doi.org/10.1038/NCOMMS10533

  46. Ze-wei TAO, Long-gui LI (2007) Cell therapy in congestive heart failure 8:647–660. https://doi.org/10.1631/jzus.2007.B0647

  47. Ro SH, Jang Y, Bae J, Kim IM, Schaecher C, Shomo ZD (2019) Autophagy in adipocyte browning: emerging drug target for intervention in obesity. Front Physiol 10:1–11. https://doi.org/10.3389/fphys.2019.00022

    Article  CAS  Google Scholar 

  48. Zhang C, He Y, Okutsu M, Ong LC, Jin Y, Zheng L, Chow P, Yu S, Zhang M, Yan Z (2021) Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARγ2 degradation. Am Physiol Soc 4:530–539. https://doi.org/10.1152/ajpendo.00640.2012

    Article  CAS  Google Scholar 

  49. Levine B (2011) Autophagy in mammalian development and differentiation 12:823–830. https://doi.org/10.1038/ncb0910-823.Autophagy

    Article  Google Scholar 

  50. Pellegrini C, Columbaro M, Schena E, Prencipe S, Andrenacci D, Iozzo P, Guzzardi MA, Capanni C, Mattioli E, Loi M, Araujo- D, Squarzoni S, Cinti S, Morselli P, Giorgetti A, Zanotti L, Gambineri A, Lattanzi G (2019) Altered adipocyte differentiation and unbalanced autophagy in type 2 Familial Partial Lipodystrophy: an in vitro and in vivo study of adipose tissue browning. Exp Mol Med. https://doi.org/10.1038/s12276-019-0289-0

  51. Guo L, Huang JX, Liu Y, Li X, Zhou SR, Qian SW, Liu Y, Zhu H, Huang HY, Dang YJ, Tang QQ (2013) Transactivation of Atg4b by C/EBPβ promotes autophagy to facilitate adipogenesis. Mol Cell Biol 33:3180–3190. https://doi.org/10.1128/MCB.00193-13

  52. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ (2009) Autophagy regulates adipose mass and differentiation in mice 119:3329–3339. https://doi.org/10.1172/JCI39228DS1

    Article  CAS  Google Scholar 

  53. Yin X, Zhou C, Li J (2019) Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. https://doi.org/10.1038/s41413-019-0058-7

    Article  PubMed  PubMed Central  Google Scholar 

  54. Montaseri A, Giampietri C, Rossi M, Riccioli A, Del Fattore A, Filippini A (2020) Biomolecules The role of autophagy in osteoclast differentiation and bone resorption function, 1–16

    Google Scholar 

  55. Tsukamoto S, Yamamoto A, Tsukamoto S, Yamamoto A (2013) The role of autophagy in early mammalian embryonic development the role of autophagy in early mammalian embryonic development 30:86–94

    Google Scholar 

  56. Nakashima A, Aoki A, Kusabiraki T, Shima T, Yoshino O, Cheng S, Sharma S, Saito S (2017) Role of autophagy in oocytogenesis, embryogenesis, implantation, and pathophysiology of pre-eclampsia 43:633–643. https://doi.org/10.1111/jog.13292

  57. Mizushima N (2007) FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells 9:497–510. https://doi.org/10.1083/jcb.200712064

  58. Frudd K, Burgoyne T, Burgoyne JR (n.d.) Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun, 1–15. https://doi.org/10.1038/s41467-017-02352-z

  59. Maruyama T, Noda NN (2018) Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J Antibiot (Tokyo) 71:72–78. https://doi.org/10.1038/ja.2017.104

    Article  CAS  Google Scholar 

  60. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T (2008) The Atg16L complex specifies the site of LC3 Lipidation for membrane biogenesis in autophagy 19:2092–2100. https://doi.org/10.1091/mbc.E07

  61. Feng Y, Klionsky DJ (2017) Autophagic membrane delivery through ATG9. Cell Res 27:161–162. https://doi.org/10.1038/cr.2017.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ungermann C, Reggiori F (2018) Atg9 proteins, not so different after all. Autophagy 14:1456–1459. https://doi.org/10.1080/15548627.2018.1477382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alers S, Wesselborg S, Stork B (2014) ATG13: just a companion, or an executor of the autophagic program?. Autophagy 10(6):944–956

    Google Scholar 

  64. Popelka H, Klionsky DJ (2017) The molecular mechanism of Atg13 function in autophagy induction: what is hidden behind the data ? Autophagy 13:449–451. https://doi.org/10.1080/15548627.2016.1277312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Menon MB, Dhamija S (2018) Beclin 1 phosphorylation—at the center of autophagy regulation. Front Cell. Dev Biol 6:1–9. https://doi.org/10.3389/fcell.2018.00137

    Article  CAS  Google Scholar 

  67. Rostislavleva K, Soler N, Ohashi Y, Zhang L, Pardon E, Burke JE, Masson GR, Johnson C, Steyaert J, Ktistakis NT, Williams RL (2015) Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 80(350):1–25. https://doi.org/10.1126/science.aac7365

  68. Anding AL, Baehrecke EH (2015) Vps15 is required for stress induced and developmentally triggered autophagy and salivary gland protein secretion in Drosophila. Cell Death Differ 22:457–464. https://doi.org/10.1038/cdd.2014.174

    Article  CAS  PubMed  Google Scholar 

  69. Iershov A, Nemazanyy I, Alkhoury C, Girard M, Barth E, Cagnard N, Montagner A, Chretien D, Rugarli EI, Guillou H, Pende M, Panasyuk G (2019) The class 3 PI3K coordinates autophagy and mitochondrial lipid catabolism by controlling nuclear receptor PPARα. Nat Commun 10:1–18. https://doi.org/10.1038/s41467-019-09598-9

    Article  CAS  Google Scholar 

  70. Grimmel M, Backhaus C, Proikas T (2015) WIPI-mediated autophagy and longevity. Cells 4:202–217. https://doi.org/10.3390/cells4020202

  71. Proikas T, Takacs Z, Dönnes P, Kohlbacher O (2015) WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome. J Cell Sci 128:207–217. https://doi.org/10.1242/jcs.146258

  72. Liu WJ, Ye L, Huang WF, Guo LJ, Xu ZG, Wu HL, Yang C, Liu HF (2016) P62 links the autophagy pathway and the Ubiqutin-proteasome system upon Ubiquitinated protein degradation. Cell Mol Biol Lett 21:1–14. https://doi.org/10.1186/s11658-016-0031-z

    Article  CAS  Google Scholar 

  73. Kageyama S, Gudmundsson SR, Sou YS, Ichimura Y, Tamura N, Kazuno S, Ueno T, Miura Y, Noshiro D, Abe M, Mizushima T, Miura N, Okuda S, Motohashi H, Lee JA, Sakimura K, Ohe T, Noda NN, Waguri S, Eskelinen EL, Komatsu M (2021) p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat Commun 12. https://doi.org/10.1038/s41467-020-20185-1

  74. Tanida I, Ueno T, Kominami E (2008) LC3 and autophagy. Methods Mol Biol 445:77–88. https://doi.org/10.1007/978-1-59745-157-4_4

    Article  CAS  PubMed  Google Scholar 

  75. Runwal G, Stamatakou E, Siddiqi FH, Puri C, Zhu Y, Rubinsztein DC (2019) LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-46657-z

    Article  CAS  Google Scholar 

  76. Maria Fimia G, Stoykova A,. Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F(2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125. https://doi.org/10.1038/nature05925

  77. Sun WL (2016) Ambra1 in autophagy and apoptosis: Implications for cell survival and chemotherapy resistance. Oncol Lett 12:367–374. https://doi.org/10.3892/ol.2016.4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shen X, Kan S, Liu Z, Lu G, Zhang X, Chen Y, Bai Y (2017) EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis. Exp Cell Res 352:130–138. https://doi.org/10.1016/j.yexcr.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  79. Hu J, Li G, Qu L, Li N, Liu W, Xia D, Hongdu B, Lin X, Xu C, Lou Y, He Q, Ma D, Chen Y (2016) TMEM166/EVA1A interacts with ATG16L1 and induces autophagosome formation and cell death. Cell Death Dis 7:1–13. https://doi.org/10.1038/cddis.2016.230

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the DST-SERB grant (EMR/2017/004149) provided to SM and DRDO-LSRB grant (O/o DG(TM)/81/48222/LSRB-351/PEE&BS/2019) provided to RC as a funding source for our research. The authors acknowledge BITS Pilani, Pilani campus, for providing infrastructural support. AKS and PB acknowledge DST-SERB (EMR/2017/004149) and DRDO (O/o DG(TM)/81/48222/LSRB-351/PEE&BS/2019), respectively, for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeshna Mukherjee .

Editor information

Editors and Affiliations

Ethics declarations

Funding Source

DST-SERB grant (EMR/2017/004149) provided to SM and DRDO-LSRB grant (O/o DG(TM)/81/48222/LSRB-351/PEE&BS/2019) provided to RC.

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, A.K., Bandyopadhyay, P., Chowdhury, R., Mukherjee, S. (2023). Autophagy in Stem Cell Maintenance and Differentiation. In: Shravage, B.V., Turksen, K. (eds) Autophagy in Stem Cell Maintenance and Differentiation. Stem Cell Biology and Regenerative Medicine, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-031-17362-2_2

Download citation

Publish with us

Policies and ethics