Skip to main content

Natural Colorants

  • Chapter
  • First Online:
Natural Additives in Foods

Abstract

Functional foods have been developed as a response to the demands from modern society for a heathy life style. In this way, synthetic colorants have been replaced by natural counterparts. The potential use of several natural pigments such as anthocyanins, betalains, carotenoids, annatto, β-carotene, lycopene, lutein, paprika, carminic acid, chlorophylls, and curcumin as food colorants have been explored in recent years. These pigments can be used to impart different colors in foods such as red, pink, orange, blue, green, and yellow, among others. Most of these natural colorants can be isolated from vegetal sources, with exception of lutein which can be also isolated from animal sources. However, natural pigments are sensitive to heat, oxygen, and light, as well as to modifications of pH, limiting their use as food colorants. This chapter reviews the state of the art with regard to the sources and properties of natural colorants, as well as their food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mazza G, Miniati E. Anthocyanins in fruits, vegetables, and grains. CRC Press; 2018. 327 p.

    Book  Google Scholar 

  2. Wallace TC, Giusti MM. Anthocyanins—nature’s bold, beautiful, and health-promoting colors. Foods. Multidisciplinary Digital Publishing Institute. 2019;8:550.

    CAS  Google Scholar 

  3. Li H, Deng Z, Zhu H, Hu C, Liu R, Young JC, et al. Highly pigmented vegetables: anthocyanin compositions and their role in antioxidant activities. Food Res Int. 2012;46(1):250–9.

    Article  CAS  Google Scholar 

  4. Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res [Internet]. 2017;61(1):1361779. Available from: https://doi.org/10.1080/16546628.2017.1361779.

    Article  Google Scholar 

  5. Rodriguez-Amaya DB. Natural food pigments and colorants. Curr Opin Food Sci. 2016;7:20–6.

    Article  Google Scholar 

  6. Cruz L, Basílio N, de Freitas V. Color stabilization of cyanidin-3-glucoside-based dyes by encapsulation with biocompatible PEGylated phospholipid micelles. Dyes Pigments. 2020;181(April):108592.

    Article  CAS  Google Scholar 

  7. Rajan VK, Hasna CK, Muraleedharan K. The natural food colorant Peonidin from cranberries as a potential radical scavenger – a DFT based mechanistic analysis. Food Chem. 2018;262(April):184–90.

    Article  CAS  Google Scholar 

  8. Gordillo B, Sigurdson GT, Lao F, González-Miret ML, Heredia FJ, Giusti MM. Assessment of the color modulation and stability of naturally copigmented anthocyanin-grape colorants with different levels of purification. Food Res Int. 2018;106(February):791–9.

    Article  CAS  Google Scholar 

  9. Herrera-Balandrano DD, Chai Z, Beta T, Feng J, Huang W. Blueberry anthocyanins: an updated review on approaches to enhancing their bioavailability. Trends Food Sci Technol. 2021;118(PB):808–21.

    Article  CAS  Google Scholar 

  10. Liu H, Shi C, Sun X, Zhang J, Ji Z. Intelligent colorimetric indicator film based on bacterial cellulose and pelargonidin dye to indicate the freshness of tilapia fillets. Food Packag Shelf Life. 2021;29(January):100712.

    Article  CAS  Google Scholar 

  11. Tang P, Giusti MM. Black goji as a potential source of natural color in a wide pH range. Food Chem. 2018;269(February):419–26.

    Article  CAS  Google Scholar 

  12. Grewal PS, Modavi C, Russ ZN, Harris NC, Dueber JE. Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metab Eng. 2018;45(December 2017):180–8.

    Article  CAS  Google Scholar 

  13. Roriz CL, Barreira JCM, Morales P, Barros L, Ferreira ICFR. Gomphrena globosa L. as a novel source of food-grade betacyanins: incorporation in ice-cream and comparison with beet-root extracts and commercial betalains. Lwt. 2018;92(October 2017):101–7.

    Article  CAS  Google Scholar 

  14. Ortega-Hernández E, Nair V, Serrano-Sandoval SN, Welti-Chanes J, Cisneros-Zevallos L, Jacobo-Velázquez DA. Wounding and UVB light synergistically induce the postharvest biosynthesis of indicaxanthin and betanin in red prickly pears. Postharvest Biol Technol. 2020;167(May):111247.

    Article  Google Scholar 

  15. Cassani L, Marcovich NE, Gomez-Zavaglia A. Valorization of fruit and vegetables agro-wastes for the sustainable production of carotenoid-based colorants with enhanced bioavailability. Food Res Int [Internet]. 2021;152(August 2021):110924. Available from: https://doi.org/10.1016/j.foodres.2021.110924.

    Google Scholar 

  16. Landim Neves MI, Silva EK, Meireles MAA. Natural blue food colorants: consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends Food Sci Technol [Internet]. 2021;112(September 2020):163–73. Available from: https://doi.org/10.1016/j.tifs.2021.03.023.

    Article  CAS  Google Scholar 

  17. Carvalho GC, Sábio RM, Chorilli M. An overview of properties and analytical methods for lycopene in organic nanocarriers. Crit Rev Anal Chem [Internet]. 2021;51(7):674–86. Available from: https://doi.org/10.1080/10408347.2020.1763774.

    CAS  Google Scholar 

  18. Baenas N, Belović M, Ilic N, Moreno DA, García-Viguera C. Industrial use of pepper (Capsicum annum L.) derived products: technological benefits and biological advantages. Food Chem. 2019;274(April 2018):872–85.

    Article  CAS  Google Scholar 

  19. Pérez-Gálvez A, Viera I, Roca M. Development of an accurate and direct method for the green food colorants detection. Food Res Int [Internet]. 2020;136(June):109484. Available from: https://doi.org/10.1016/j.foodres.2020.109484.

    Article  Google Scholar 

  20. Leimann VF, Gonçalves OH, Sorita GD, Rezende S, Bona E, Fernandes IPM, et al. Heat and pH stable curcumin-based hydrophylic colorants obtained by the solid dispersion technology assisted by spray-drying. Chem Eng Sci [Internet]. 2019;205:248–58. Available from: https://doi.org/10.1016/j.ces.2019.04.044.

    Article  CAS  Google Scholar 

  21. Guillermin D, Debroise T, Trigueiro P, de Viguerie L, Rigaud B, Morlet-Savary F, et al. New pigments based on carminic acid and smectites: a molecular investigation. Dyes Pigments. 2019;160(July 2018):971–82.

    Article  CAS  Google Scholar 

  22. Slimen IB, Najar T, Abderrabba M. Correction to chemical and antioxidant properties of betalains. J Agric Food Chem. 2017;65(7):1466.

    Article  Google Scholar 

  23. Moßhammer MR, Stintzing FC, Carle R. Evaluation of different methods for the production of juice concentrates and fruit powders from cactus pear. Innov Food Sci Emerg Technol. 2006;7(4):275–87.

    Article  Google Scholar 

  24. Herbach KM, Maier C, Stintzing FC, Carle R. Effects of processing and storage on juice colour and betacyanin stability of purple pitaya (Hylocereus polyrhizus) juice. Eur Food Res Technol. 2007;224(5):649–58.

    Article  CAS  Google Scholar 

  25. Gandía-Herrero F, Escribano J, García-Carmona F. Structural implications on color, fluorescence, and antiradical activity in betalains. Planta. 2010;232(2):449–60.

    Article  Google Scholar 

  26. Cavalcanti RN, Santos DT, Meireles MAA. Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Res Int. 2011;44(2):499–509.

    Article  CAS  Google Scholar 

  27. Wrolstad RE, Culver CA. Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci Technol. 2012;3:59–77.

    Article  CAS  Google Scholar 

  28. Iacobucci GA, Sweeny JG. The chemistry of anthocyanins, anthocyanidins and related flavylium salts. Tetrahedron. 1983;39(19):3005–38.

    Article  CAS  Google Scholar 

  29. Sui X, Sun H, Qi B, Zhang M, Li Y, Jiang L. Functional and conformational changes to soy proteins accompanying anthocyanins: focus on covalent and non-covalent interactions. Food Chem. 2018;245:871–8.

    Article  CAS  Google Scholar 

  30. Markakis P. Stability of anthocyanins in foods. In: Markakis P, editor. Anthocyanins as food color. Elsevier; 1982. p. 163–80.

    Chapter  Google Scholar 

  31. Codex Alimentarius Commission. Class names and the international numbering system for food additives. CXG 36-1989. 2008

    Google Scholar 

  32. Codex Alimentarius Commission. Class names and the international numbering system for food additives. CXG 36-1989. April 2008. p. 33–5. Available from: https://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/.

  33. Roy S, Rhim J-W. Anthocyanin food colorant and its application in pH-responsive color change indicator films. Crit Rev Food Sci Nutr. 2021;61(14):2297–325.

    Article  CAS  Google Scholar 

  34. B1kowska-Barczak A. Acylated anthocyanins as stable, natural food colorants—A review. Polish J Food Nutr Sci. 2005;14:55.

    Google Scholar 

  35. Castañeda-Ovando A, Pacheco-Hernández M d L, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA. Chemical studies of anthocyanins: a review. Food Chem [Internet]. 2009;113(4):859–71. Available from: https://doi.org/10.1016/j.foodchem.2008.09.001.

    Article  Google Scholar 

  36. Fennema OR. Food chemistry. M. Dekker; 1961.

    Google Scholar 

  37. Weston M, Phan MAT, Arcot J, Chandrawati R. Anthocyanin-based sensors derived from food waste as an active use-by date indicator for milk. Food Chem. 2020;326(November 2019):127017.

    Article  CAS  Google Scholar 

  38. Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, José de Andrade C, et al. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int. 2022;153(January):110929.

    Article  CAS  Google Scholar 

  39. Delgado-Vargas F, Jiménez AR, Paredes-López O. Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr. 2000;40(3):173–289.

    Article  CAS  Google Scholar 

  40. Miguel MG. Betalains in some species of the amaranthaceae family: a review. Antioxidants. 2018;7(4):1–33.

    Article  Google Scholar 

  41. Celli GB, Brooks MS. Impact of extraction and processing conditions on betalains and comparison of properties with anthocyanins — a current review. Food Res Int [Internet]. 2017;100:501–9. Available from: https://doi.org/10.1016/j.foodres.2016.08.034.

    Article  CAS  Google Scholar 

  42. Ngamwonglumlert L, Devahastin S, Chiewchan N. Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr. 2017;57(15):3243–59.

    Article  CAS  Google Scholar 

  43. Khan MI. Plant betalains: safety, antioxidant activity, clinical efficacy, and bioavailability. Compr Rev Food Sci Food Saf. 2016;15(2):316–30.

    Article  CAS  Google Scholar 

  44. Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54(4):733–49.

    Article  CAS  Google Scholar 

  45. Otálora MC, Carriazo JG, Iturriaga L, Osorio C, Nazareno MA. Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: pigment chemical stability during storage of beads. Food Chem. 2016;202:373–82.

    Article  Google Scholar 

  46. Kaimainen M, Laaksonen O, Järvenpää E, Sandell M, Huopalahti R. Consumer acceptance and stability of spray dried betanin in model juices. Food Chem. 2015;187:398–406.

    Article  CAS  Google Scholar 

  47. Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, Aadil RM, et al. Carotenoid-loaded nanocarriers: a comprehensive review. Adv Colloid Interface Sci [Internet]. 2020;275:102048. Available from: https://doi.org/10.1016/j.cis.2019.102048.

    Article  CAS  Google Scholar 

  48. Santos PD d F, Rubio FTV, da Silva MP, Pinho LS, Favaro-Trindade CS. Microencapsulation of carotenoid-rich materials: a review. Food Res Int [Internet]. 2021;147(June):110571. Available from: https://doi.org/10.1016/j.foodres.2021.110571.

    Article  CAS  Google Scholar 

  49. Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, et al. Sources, stability, encapsulation and application of natural pigments in foods. Food Rev Int [Internet]. 2020;00(00):1–56. Available from: https://doi.org/10.1080/87559129.2020.1837862.

    Google Scholar 

  50. Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, et al. A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res. 2018;70(February):62–93.

    Article  CAS  Google Scholar 

  51. Manzoor M, Singh J, Gani A, Noor N. Valorization of natural colors as health-promoting bioactive compounds: phytochemical profile, extraction techniques, and pharmacological perspectives. Food Chem [Internet]. 2021;362(May):130141. Available from: https://doi.org/10.1016/j.foodchem.2021.130141.

    Article  CAS  Google Scholar 

  52. Rodriguez-Amaya DB. Update on natural food pigments - a mini-review on carotenoids, anthocyanins, and betalains. Food Res Int [Internet]. 2019;124(2017):200–5. Available from: https://doi.org/10.1016/j.foodres.2018.05.028.

    Article  CAS  Google Scholar 

  53. Luzardo-Ocampo I, Ramírez-Jiménez AK, Yañez J, Mojica L, Luna-Vital DA. Technological applications of natural colorants in food systems: a review. Foods. 2021;10(3):1–34.

    Article  Google Scholar 

  54. De Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA. The colors of health: chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. Annu Rev Food Sci Technol. 2020;11:145–82.

    Article  Google Scholar 

  55. Raddatz-Mota D, Pérez-Flores LJ, Carrari F, Mendoza-Espinoza JA, de León-Sánchez FD, Pinzón-López LL, et al. Achiote (Bixa orellana L.): a natural source of pigment and vitamin E. J Food Sci Technol. 2017;54(6):1729–41.

    Article  CAS  Google Scholar 

  56. Vilar DDA, Vilar MSDA, Moura TFADLE, Raffin FN, Oliveira MRD, Franco CFDO, et al. Traditional uses, chemical constituents, and biological activities of Bixa Orellana L.: a review. Sci World J. 2014;2014:857292.

    Article  Google Scholar 

  57. Shahid-ul-Islam RLJ, Mohammad F. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications – a review. J Adv Res [Internet]. 2016;7(3):499–514. Available from: https://doi.org/10.1016/j.jare.2015.11.002.

    Article  CAS  Google Scholar 

  58. EFSA (European Food Safety Authority). The safety of annatto extracts (E 160b) as a food additive. EFSA J. 2016;14(8):e04544.

    Google Scholar 

  59. Sharma P, Segat A, Kelly AL, Sheehan JJ. Colorants in cheese manufacture: production, chemistry, interactions, and regulation. Compr Rev Food Sci Food Saf. 2019;19(October):1–23.

    Google Scholar 

  60. Rivera-Madrid R, Aguilar-Espinosa M, Cárdenas-Conejo Y, Garza-Caligaris LE. Carotenoid derivates in achiote (Bixa orellana) seeds: synthesis and health promoting properties. Front Plant Sci. 2016;7(September):1–7.

    Google Scholar 

  61. EFSA (European Food Safety Authority). Scientific opinion on the re-evaluation of mixed carotenes (E 160a (i)) and beta-carotene (E 160a (ii)) as a food additive. EFSA J. 2012;10(3):1–67.

    Google Scholar 

  62. Grune T, Lietz G, Palou A, Ross AC, Stahl W, Tang G, et al. β-carotene is an important vitamin A source for humans. J Nutr. 2010;140(12):2268S–85S.

    Article  CAS  Google Scholar 

  63. Saini RK, Keum YS. Carotenoid extraction methods: a review of recent developments. Food Chem [Internet]. 2018;240(April 2017):90–103. Available from: https://doi.org/10.1016/j.foodchem.2017.07.099.

    Article  CAS  Google Scholar 

  64. Rammuni MN, Ariyadasa TU, Nimarshana PHV, Attalage RA. Comparative assessment on the extraction of carotenoids from microalgal sources: astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem [Internet]. 2019;277(October 2018):128–34. Available from: https://doi.org/10.1016/j.foodchem.2018.10.066.

    Article  CAS  Google Scholar 

  65. Harvey PJ, Ben-Amotz A. Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Res [Internet]. 2020;50(July):102002. Available from: https://doi.org/10.1016/j.algal.2020.102002.

    Article  Google Scholar 

  66. Mercadante AZ, Rodrigues DB, Petry FC, Mariutti LRB. Carotenoid esters in foods – a review and practical directions on analysis and occurrence. Food Res Int [Internet]. 2017;99:830–50. Available from: https://doi.org/10.1016/j.foodres.2016.12.018.

    Article  CAS  Google Scholar 

  67. Maurya VK, Shakya A, Aggarwal M, Gothandam KM, Bohn T, Pareek S. Fate of β-carotene within loaded delivery systems in food: state of knowledge. Antioxidants. 2021;10(3):1–49.

    Article  CAS  Google Scholar 

  68. Carvalho GC, de Camargo BAF, de Araújo JTC, Chorilli M. Lycopene: from tomato to its nutraceutical use and its association with nanotechnology. Trends Food Sci Technol. 2021;118(October):447–58.

    Article  CAS  Google Scholar 

  69. EFSA (European Food Safety Authority). Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food Adopted on 7 March 2008. EFSA J. 2008;721(80):1–29.

    Google Scholar 

  70. Shi J, Le Maguer M. Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr. 2000;40:1–42.

    Article  CAS  Google Scholar 

  71. Chang Y, Jiao Y, Li D-J, Liu X-L, Han H. Glycosylated zein as a novel nanodelivery vehicle for lutein. Food Chem [Internet]. 2022;376(December 2021):131927. Available from: https://doi.org/10.1016/j.foodchem.2021.131927.

    Article  CAS  Google Scholar 

  72. Gansukh E, Mya KK, Jung M, Keum YS, Kim DH, Saini RK. Lutein derived from marigold (Tagetes erecta) petals triggers ROS generation and activates Bax and caspase-3 mediated apoptosis of human cervical carcinoma (HeLa) cells. Food Chem Toxicol [Internet]. 2019;127(October 2018):11–8. Available from: https://doi.org/10.1016/j.fct.2019.02.037.

    Article  CAS  Google Scholar 

  73. Steiner BM, McClements DJ, Davidov-Pardo G. Encapsulation systems for lutein: a review. Trends Food Sci Technol. 2018;82(October):71–81.

    Article  CAS  Google Scholar 

  74. Zeni ALB, Camargo A, Dalmagro AP. Lutein prevents corticosterone-induced depressive-like behavior in mice with the involvement of antioxidant and neuroprotective activities. Pharmacol Biochem Behav. 2019;179:63–72.

    Article  CAS  Google Scholar 

  75. Kim J, Lee J, Oh JH, Chang HJ, Sohn DK, Kwon O, et al. Dietary lutein plus zeaxanthin intake and DICER1 rs3742330 a > G polymorphism relative to colorectal cancer risk. Sci Rep [Internet]. 2019;9(1):1–8. Available from: https://doi.org/10.1038/s41598-019-39747-5.

    Google Scholar 

  76. Toragall V, Srirangam P, Jayapala N, Baskaran V. Lutein encapsulated oleic - linoleic acid nanoemulsion boosts oral bioavailability of the eye protective carotenoid lutein in rat model. Mater Today Commun [Internet]. 2021;28(May):102522. Available from: https://doi.org/10.1016/j.mtcomm.2021.102522.

    Article  CAS  Google Scholar 

  77. Ding Z, Tao T, Yin X, Prakash S, Wang X, Zhao Y, et al. Improved encapsulation efficiency and storage stability of spray dried microencapsulated lutein with carbohydrates combinations as encapsulating material: microencapsulated spray-dried lutein. Lebensm Wiss Technol. 2020;124:109139.

    Article  CAS  Google Scholar 

  78. Hao J, Xu J, Zhang W, Li X, Liang D, Xu D, et al. The improvement of the physicochemical properties and bioaccessibility of lutein microparticles by electrostatic complexation. Food Hydrocoll [Internet]. 2022;125(October 2021):107381. Available from: https://doi.org/10.1016/j.foodhyd.2021.107381.

    Article  CAS  Google Scholar 

  79. Šeregelj V, Ćetković G, Čanadanović-Brunet J, Šaponjac VT, Vulić J, Lević S, et al. Encapsulation of carrot waste extract by freeze and spray drying techniques: an optimization study. Lebensm Wiss Technol. 2021;138(August 2020):1–10.

    Google Scholar 

  80. Chang R, Yang J, Ge S, Zhao M, Liang C, Xiong L, et al. Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release. Food Hydrocoll [Internet]. 2017;67:14–26. Available from: https://doi.org/10.1016/j.foodhyd.2016.12.023.

    Article  CAS  Google Scholar 

  81. Zhao L, Temelli F, Curtis JM, Chen L. Encapsulation of lutein in liposomes using supercritical carbon dioxide. Food Res Int [Internet]. 2017;100:168–79. Available from: https://doi.org/10.1016/j.foodres.2017.06.055.

  82. Qi X, Xu D, Zhu J, Wang S, Peng J, Gao W, et al. Interaction of ovalbumin with lutein dipalmitate and their effects on the color stability of marigold lutein esters extracts. Food Chem [Internet]. 2022;372(11):131211. Available from: https://doi.org/10.1016/j.foodchem.2021.131211.

    Article  CAS  Google Scholar 

  83. EFSA (European Food Safety Authority). Scientific opinion on the re-evaluation of paprika extract (E 160c) as a food additive. EFSA J. 2015;13(12):1–52.

    Google Scholar 

  84. Arimboor R, Natarajan RB, Menon KR, Chandrasekhar LP, Moorkoth V. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. J Food Sci Technol. 2015;52(3):1258–71.

    Article  CAS  Google Scholar 

  85. Rowe A. Global cochineal production: scale, welfare concerns, and potential interventions. OSF Preprints. 2020. p. 1–15.

    Google Scholar 

  86. Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, et al. EFSA ANS panel (EFSA panel on food additives and nutrient sources added to food). Sci Opin re-evaluation cochineal, carminic acid, carmines as a food. Addit Eur Food Saf Auth J. 2015;13:4288.

    Google Scholar 

  87. Zakariya SM, Furkan M, Zaman M, Chandel TI, Ali SM, Uversky VN, et al. An in-vitro elucidation of inhibitory potential of carminic acid: possible therapeutic approach for neurodegenerative diseases. J Mol Liq. 2020;303:112692.

    Article  CAS  Google Scholar 

  88. Rader Bowers LM, Schmidtke Sobeck SJ. Impact of medium and ambient environment on the photodegradation of carmine in solution and paints. Dyes Pigments. 2016;127:18–24.

    Article  CAS  Google Scholar 

  89. Ghidouche S, Rey B, Michel M, Galaffu N. A rapid tool for the stability assessment of natural food colours. Food Chem. 2013;139(1–4):978–85.

    Article  CAS  Google Scholar 

  90. Campana MG, Robles García NM, Tuross N. America’s red gold: multiple lineages of cultivated cochineal in Mexico. Ecol Evol. 2015;5(3):607–17.

    Article  Google Scholar 

  91. Cooksey CJ. The red insect dyes: carminic, kermesic and laccaic acids and their derivatives. Biotech Histochem. 2019;94(2):100–7.

    Article  CAS  Google Scholar 

  92. Yilmaz UT, Ergun F, Yilmaz H. Determination of the food dye carmine in milk and candy products by differential pulse polarography. J Food Drug Anal. 2014;22(3):329–35.

    Article  CAS  Google Scholar 

  93. Sharma M, Usmani Z, Gupta VK, Bhat R. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit Rev Biotechnol [Internet]. 2021;41(4):535–63. Available from: https://doi.org/10.1080/07388551.2021.1873240.

    Article  CAS  Google Scholar 

  94. Su S, Zhou Y, Qin JG, Yao W, Ma Z. Optimization of the method for chlorophyll extraction in aquatic plants. J Freshw Ecol. 2010;25(4):531–8.

    Article  CAS  Google Scholar 

  95. Lee J, Kwak M, Chang YK, Kim D. Green solvent-based extraction of chlorophyll a from Nannochloropsis sp. using 2,3-butanediol. Sep Purif Technol [Internet]. 2021;276(July):119248. Available from: https://doi.org/10.1016/j.seppur.2021.119248.

    Article  CAS  Google Scholar 

  96. Morcelli A, Cassel E, Vargas R, Rech R, Marcílio N. Supercritical fluid (CO2+ethanol) extraction of chlorophylls and carotenoids from Chlorella sorokiniana: COSMO-SAC assisted prediction of properties and experimental approach. J CO2 Util [Internet]. 2021;51(May):101649. Available from: https://doi.org/10.1016/j.jcou.2021.101649.

    Article  CAS  Google Scholar 

  97. Tavakoli S, Hong H, Wang K, Yang Q, Gahruie HH, Zhuang S, et al. Ultrasonic-assisted food-grade solvent extraction of high-value added compounds from microalgae Spirulina platensis and evaluation of their antioxidant and antibacterial properties. Algal Res [Internet]. 2021;60(September):102493. Available from: https://doi.org/10.1016/j.algal.2021.102493.

    Article  Google Scholar 

  98. Vaz BMC, Martins M, de Souza Mesquita LM, Neves MC, Fernandes APM, Pinto DCGA, et al. Using aqueous solutions of ionic liquids as chlorophyll eluents in solid-phase extraction processes. Chem Eng J. 2022;428(July 2021):131073.

    Article  CAS  Google Scholar 

  99. EFSA (European Food Safety Authority). Scientific opinion on re-evaluation of copper complexes of chlorophylls (E 141(i)) and chlorophyllins (E 141(ii)) as food additives. EFSA J. 2015;13(6):1–60.

    Google Scholar 

  100. Wang F, Terazono Y, Liu J, Fefer M, Pelton RH. Adsorption of aqueous copper chlorophyllin mixtures on model surfaces. Colloids Surf A Physicochem Eng Asp [Internet]. 2020;592(December 2019):124578. Available from: https://doi.org/10.1016/j.colsurfa.2020.124578.

    Article  CAS  Google Scholar 

  101. Gandul-Rojas B, Roca M, Gallardo-Guerrero L. Detection of the color adulteration of green table olives with copper chlorophyllin complexes (E-141ii colorant). LWT – Food Sci Technol [Internet]. 2012;46(1):311–8. Available from: https://doi.org/10.1016/j.lwt.2011.09.012.

    Article  CAS  Google Scholar 

  102. Zielinski AAF, Sanchez-Camargo A d P, Benvenutti L, Ferro DM, Dias JL, Ferreira SRS. High-pressure fluid technologies: recent approaches to the production of natural pigments for food and pharmaceutical applications. Trends Food Sci Technol. 2021;118(October):850–69.

    Article  CAS  Google Scholar 

  103. Almeida HHS, Barros L, Barreira JCM, Calhelha RC, Heleno SA, Sayer C, et al. Bioactive evaluation and application of different formulations of the natural colorant curcumin (E100) in a hydrophilic matrix (yogurt). Food Chem [Internet]. 2018;261(April):224–32. Available from: https://doi.org/10.1016/j.foodchem.2018.04.056.

    Article  CAS  Google Scholar 

  104. Neves MIL, Desobry-Banon S, Perrone IT, Desobry S, Petit J. Encapsulation of curcumin in milk powders by spray-drying: physicochemistry, rehydration properties, and stability during storage. Powder Technol. 2019;345:601–7.

    Article  CAS  Google Scholar 

  105. Rao PJ, Khanum H. A green chemistry approach for nanoencapsulation of bioactive compound – Curcumin. LWT – Food Sci Technol [Internet]. 2016;65:695–702. Available from: https://doi.org/10.1016/j.lwt.2015.08.070.

    Article  CAS  Google Scholar 

  106. Tai K, Rappolt M, Mao L, Gao Y, Yuan F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem [Internet]. 2020;326(May):126973. Available from: https://doi.org/10.1016/j.foodchem.2020.126973.

    Article  CAS  Google Scholar 

  107. Sigurdson GT, Tang P, Giusti MM. Natural colorants: food colorants from natural sources. Annu Rev Food Sci Technol. 2017;8:261–80.

    Article  CAS  Google Scholar 

  108. Pez Jaeschke D, Rocha Teixeira I, Damasceno Ferreira Marczak L, Domeneghini Mercali G. Phycocyanin from Spirulina: a review of extraction methods and stability. Food Res Int. 2021;143(October 2020):110314.

    Article  CAS  Google Scholar 

  109. Galetovic A, Seura F, Gallardo V, Graves R, Cortés J, Valdivia C, et al. Use of phycobiliproteins from Atacama cyanobacteria as food colorants in a dairy beverage prototype. Foods. 2020;9(2):1–13.

    Article  Google Scholar 

  110. Bord C, Guerinon D, Lebecque A. Heated or raw blue cheeses: what are the drivers influencing consumer preferences? Int J Food Sci Technol. 2017;52(9):1959–70.

    Article  CAS  Google Scholar 

  111. Carocho M, Morales P, Ferreira ICFR. Natural food additives: quo vadis? Trends Food Sci Technol. 2015;45(2):284–95.

    Article  CAS  Google Scholar 

  112. Martins N, Roriz CL, Morales P, Barros L, Ferreira ICFR. Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol. 2016;52:1–15.

    Article  CAS  Google Scholar 

  113. Backes E, Leichtweis MG, Pereira C, Carocho M, Barreira JCM, Kamal Genena A, et al. Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: a thorough study in confectionery products. Food Chem. 2020;333(February):127457.

    Article  CAS  Google Scholar 

  114. Vázquez-Carrillo MG, Aparicio-Eusebio LA, Salinas-Moreno Y, Buendía-Gonzalez MO, Santiago-Ramos D. Nutraceutical, physicochemical, and sensory properties of blue corn polvorones, a traditional flour-based confectionery. Plant Foods Hum Nutr. 2018;73(4):321–7.

    Article  Google Scholar 

  115. Baldin J, Michelin E, Polizer Y, Rodrigues I, Godoy S, Fregonesi R, et al. Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity. Meat Sci. 2016;118:15–21.

    Article  CAS  Google Scholar 

  116. Yao X, Liu J, Hu H, Yun D, Liu J. Development and comparison of different polysaccharide/PVA-based active/intelligent packaging films containing red pitaya betacyanins. Food Hydrocoll. 2022;124(PB):107305.

    Article  CAS  Google Scholar 

  117. Etxabide A, Maté JI, Kilmartin PA. Effect of curcumin, betanin and anthocyanin containing colourants addition on gelatin films properties for intelligent films development. Food Hydrocoll. 2021;115(January):106593.

    Article  CAS  Google Scholar 

  118. Carvalho AS d, Rezende SC d, Caleja C, Pereira E, Barros L, Fernandes I, et al. β-Carotene colouring systems based on solid lipid particles produced by hot melt dispersion. Food Control. 2021;129(May):108262.

    Article  CAS  Google Scholar 

  119. Landim Parente GD, Nunes de Melo BD, Albuquerque de Souza J, da Conceição MM, Ubbink J, Mattos Braga AL. Fortification of traditional tapioca “pancakes” from the Brazilian northeast with microencapsulated carrot carotenoid. Lwt. 2021;152(May):112301.

    Article  CAS  Google Scholar 

  120. Ordóñez-Santos LE, Esparza-Estrada J, Vanegas-Mahecha P. Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. Lwt. 2021;139(June 2020):110598.

    Article  Google Scholar 

  121. Tupuna-Yerovi DS, Paese K, Flôres SH, Guterres SS, Rios A. Addition of norbixin microcapsules obtained by spray drying in an isotonic tangerine soft drink as a natural dye. J Food Sci Technol. 2020;57(3):1021–31.

    Article  CAS  Google Scholar 

  122. de BARROS RF, Torres FR, da SILVA PHF, Stringheta PC, Pereira JPF, de PAULA JCJ, et al. Lutein as a functional ingredient in sheep milk yogurt: development, characterization and extraction recovery. Food Sci Technol. 2020;40(December):683–90.

    Article  Google Scholar 

  123. Cerezal Mezquita P, Morales J, Palma J, Ruiz MDC, Jáuregui M. Stability of Lutein Obtained from Muriellopsis sp biomass and used as a natural colorant and antioxidant in a mayonnaise-like dressing sauce. CYTA – J Food [Internet]. 2019;17(1):517–26. Available from: https://doi.org/10.1080/19476337.2019.1609091.

    Article  CAS  Google Scholar 

  124. Mehta D, Prasad P, Sangwan RS, Yadav SK. Tomato processing byproduct valorization in bread and muffin: improvement in physicochemical properties and shelf life stability. J Food Sci Technol [Internet]. 2018;55(7):2560–8. Available from: https://doi.org/10.1007/s13197-018-3176-0.

    Article  CAS  Google Scholar 

  125. Marchetti N, Bonetti G, Brandolini V, Cavazzini A, Maietti A, Meca G, et al. Stinging nettle (Urtica dioica L.) as a functional food additive in egg pasta: enrichment and bioaccessibility of Lutein and β-carotene. J Funct Foods [Internet]. 2018;47(March):547–53. Available from: https://doi.org/10.1016/j.jff.2018.05.062.

    Article  CAS  Google Scholar 

  126. Teixeira VMC, da Silva RFG, Gonçalves OH, Pereira C, Barros L, Ferreira ICFR, et al. Chemometric approaches to evaluate the substitution of synthetic food dyes by natural compounds: the case of nanoencapsulated curcumin, spirulina, and hibiscus extracts. Lwt. 2022;154:112786.

    Article  CAS  Google Scholar 

  127. Tosati JV, de Oliveira EF, Oliveira JV, Nitin N, Monteiro AR. Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages. Food Control. 2018;84:177–85.

    Article  CAS  Google Scholar 

  128. Batista AP, Niccolai A, Fradinho P, Fragoso S, Bursic I, Rodolfi L, et al. Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017;26(June):161–71.

    Article  Google Scholar 

  129. Tereucan G, Ercoli S, Cornejo P, Winterhalter P, Contreras B, Ruiz A. Stability of antioxidant compounds and activities of a natural dye from coloured-flesh potatoes in dairy foods. Lebensm Wiss Technol. 2021;144(March):111252.

    Article  CAS  Google Scholar 

  130. Swer TL, Chauhan K, Mukhim C, Bashir K, Kumar A. Application of anthocyanins extracted from Sohiong (Prunus nepalensis L.) in food processing. Lebensm Wiss Technol. 2019;114(June):108360.

    Article  CAS  Google Scholar 

  131. Byamukama R, Andima M, Mbabazi A, Kiremire BT. Anthocyanins from mulberry (Morus rubra) fruits as potential natural colour additives in yoghurt. African J Pure Appl Chem. 2014;8(12):182–90.

    Google Scholar 

  132. Pires TCSP, Dias MI, Barros L, Barreira JCM, Santos-Buelga C, Ferreira ICFR. Incorporation of natural colorants obtained from edible flowers in yogurts. Lebensm Wiss Technol. 2018;97(July):668–75.

    Article  CAS  Google Scholar 

  133. Sampaio SL, Lonchamp J, Dias MI, Liddle C, Petropoulos SA, Glamočlija J, et al. Anthocyanin-rich extracts from purple and red potatoes as natural colourants: bioactive properties, application in a soft drink formulation and sensory analysis. Food Chem. 2021;342(October 2020):128526.

    Article  CAS  Google Scholar 

  134. Montibeller MJ, de Lima MP, Tupuna-Yerovi DS, Rios A d O, Manfroi V. Stability assessment of anthocyanins obtained from skin grape applied in kefir and carbonated water as a natural colorant. J Food Process Preserv. 2018;42(8):1–10.

    Article  CAS  Google Scholar 

  135. Albuquerque BR, Pinela J, Barros L, Oliveira MBPP, Ferreira ICFR. Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: optimization of heat- and ultrasound-assisted extractions and application in a bakery product. Food Chem. 2020;316:126364.

    Article  CAS  Google Scholar 

  136. Zheng Y, Li X, Huang Y, Li H, Chen L, Liu X. Two colorimetric films based on chitin whiskers and sodium alginate/gelatin incorporated with anthocyanins for monitoring food freshness. Food Hydrocoll. 2022;127(January):107517.

    Article  CAS  Google Scholar 

  137. Sani MA, Tavassoli M, Hamishehkar H, McClements DJ. Carbohydrate-based films containing pH-sensitive red barberry anthocyanins: application as biodegradable smart food packaging materials. Carbohydr Polym [Internet]. 2021;255(December 2020):117488. Available from: https://doi.org/10.1016/j.carbpol.2020.117488.

    Article  CAS  Google Scholar 

  138. Wu LT, Tsai IL, Ho YC, Hang YH, Lin C, Tsai ML, et al. Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydr Polym. 2021;254(June 2020):117410.

    Article  CAS  Google Scholar 

  139. Boonsiriwit A, Lee M, Kim M, Inthamat P, Siripatrawan U, Lee YS. Hydroxypropyl methylcellulose/microcrystalline cellulose biocomposite film incorporated with butterfly pea anthocyanin as a sustainable pH-responsive indicator for intelligent food-packaging applications. Food Biosci. 2021;44(PA):101392.

    Article  CAS  Google Scholar 

  140. Wen Y, Liu J, Jiang L, Zhu Z, He S, He S, et al. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packag Shelf Life. 2021;29(June):100709.

    Article  CAS  Google Scholar 

  141. He Y, Li B, Du J, Cao S, Liu M, Li X, et al. Development of pH-responsive absorbent pad based on polyvinyl alcohol/agarose/anthocyanins for meat packaging and freshness indication. Int J Biol Macromol. 2022;201(January):203–15.

    Article  CAS  Google Scholar 

  142. Alizadeh Sani M, Tavassoli M, Salim SA, Azizi-lalabadi M, McClements DJ. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll. 2022;124(November 2021):107324.

    Article  CAS  Google Scholar 

  143. Otálora MC, de Jesús BH, Perilla JE, Osorio C, Nazareno MA. Encapsulated betalains (Opuntia ficus-indica) as natural colorants. Case study: gummy candies. Lwt [Internet]. 2019;103(December 2018):222–7. Available from: https://doi.org/10.1016/j.lwt.2018.12.074.

    Article  Google Scholar 

  144. Moghaddas Kia E, Ghaderzadeh S, Mojaddar Langroodi A, Ghasempour Z, Ehsani A. Red beet extract usage in gelatin/gellan based gummy candy formulation introducing Salix aegyptiaca distillate as a flavouring agent. J Food Sci Technol. 2020;57(9):3355–62.

    Article  CAS  Google Scholar 

  145. Kharrat N, Salem H, Mrabet A, Aloui F, Triki S, Fendri A, et al. Synergistic effect of polysaccharides, betalain pigment and phenolic compounds of red prickly pear (Opuntia stricta) in the stabilization of salami. Int J Biol Macromol. 2018;111:561–8.

    Article  CAS  Google Scholar 

  146. Yang W, Kaimainen M, Järvenpää E, Sandell M, Huopalahti R, Yang B, et al. Red beet (Beta vulgaris) betalains and grape (Vitis vinifera) anthocyanins as colorants in white currant juice – effect of storage on degradation kinetics, color stability and sensory properties. Food Chem. 2021;348(January):128995.

    Article  CAS  Google Scholar 

  147. Yao X, Hu H, Qin Y, Liu J. Development of antioxidant, antimicrobial and ammonia-sensitive films based on quaternary ammonium chitosan, polyvinyl alcohol and betalains-rich cactus pears (Opuntia ficus-indica) extract. Food Hydrocoll [Internet]. 2020;106(February):105896. Available from: https://doi.org/10.1016/j.foodhyd.2020.105896.

    Article  CAS  Google Scholar 

  148. Qin Y, Liu Y, Zhang X, Liu J. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocoll. 2020;100(August 2019):105410.

    Article  CAS  Google Scholar 

  149. Lobo FATF, Silva V, Domingues J, Rodrigues S, Costa V, Falcão D, et al. Inclusion complexes of yellow bell pepper pigments with β-cyclodextrin: preparation, characterisation and application as food natural colorant. J Sci Food Agric. 2018;98(7):2665–71.

    Article  CAS  Google Scholar 

  150. Sobral D, Bueno Costa RG, Machado GM, Jacinto de Paula JC, Martins Teodoro VA, Nunes NM, et al. Can lutein replace annatto in the manufacture of Prato cheese? LWT – Food Sci Technol. 2016;68:349–55.

    Article  CAS  Google Scholar 

  151. Liu CX, Wang C, Liu JX, Ren DX. Effect of feed lutein supplementation on mozzarella cheese quality and lutein stability. Int Dairy J [Internet]. 2018;83:28–33. Available from: https://doi.org/10.1016/j.idairyj.2018.03.008.

    Article  CAS  Google Scholar 

  152. Domingos LD, Xavier AAO, Mercadante AZ, Petenate AJ, Jorge RA, Viotto WH. Oxidative stability of yogurt with added lutein dye. J Dairy Sci [Internet]. 2014;97(2):616–23. Available from: https://doi.org/10.3168/jds.2013-6971.

    Article  CAS  Google Scholar 

  153. Pöhnl H. Applications of different curing approaches and natural colorants in meat products. In: Handbook on natural pigments in food and beverages: industrial applications for improving food color. Elsevier Ltd; 2016. p. 209–25.

    Google Scholar 

  154. Ongaratto GC, Oro G, Kalschne DL, Trindade Cursino AC, Canan C. Cochineal carmine adsorbed on layered zinc hydroxide salt applied on mortadella to improve color stability. Curr Res Food Sci. 2021;4(July):758–64.

    Article  CAS  Google Scholar 

  155. Fradinho P, Niccolai A, Soares R, Rodolfi L, Biondi N, Tredici MR, et al. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020;45(December 2019):101743.

    Article  Google Scholar 

  156. Bazarnova J, Nilova L, Trukhina E, Bernavskaya M, Smyatskaya Y, Aktar T. Use of microalgae biomass for fortification of food products from grain. Foods. 2021;10(12):3018.

    Article  CAS  Google Scholar 

  157. Yasuda M, Tabata M. Effect of emulsifiers on the discoloration of chlorophyll and their potential for use in green beverages. J Food Sci. 2021;86(7):3033–45.

    Article  CAS  Google Scholar 

  158. Chen H z, Zhang M, Bhandari B, Guo Z. Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper. Postharvest Biol Technol [Internet]. 2018;140(November 2017):85–92. Available from: https://doi.org/10.1016/j.postharvbio.2018.02.011.

    Article  CAS  Google Scholar 

  159. Saraiva BB, Rodrigues BM, da Silva Junior RC, Scapim MR d S, Lancheros CAC, Nakamura CV, et al. Photodynamic inactivation of Pseudomonas fluorescens in Minas Frescal cheese using curcumin as a photosensitizer. Lwt. 2021;151(July):112143.

    Article  CAS  Google Scholar 

  160. KOOP BL, Cargnin MA, Fidler F, Ribeiro DHB, de Campos CEM, Soares LS, et al. Vacuum curcumin infusion in cooked oysters (Crassostrea gigas) to increase their shelf life. J Food Process Eng. 2019;42(6):1–11.

    Article  Google Scholar 

  161. Song HY, McClements DJ. Nano-enabled-fortification of salad dressings with curcumin: impact of nanoemulsion-based delivery systems on physicochemical properties. Lwt [Internet]. 2021;145(March):111299. Available from: https://doi.org/10.1016/j.lwt.2021.111299.

    Article  CAS  Google Scholar 

  162. Yildiz E, Sumnu G, Kahyaoglu LN. Monitoring freshness of chicken breast by using natural halochromic curcumin loaded chitosan/PEO nanofibers as an intelligent package. Int J Biol Macromol [Internet]. 2021;170:437–46. Available from: https://doi.org/10.1016/j.ijbiomac.2020.12.160.

    Article  CAS  Google Scholar 

  163. Tosati JV, Messias VC, Carvalho PIN, Rodrigues Pollonio MA, Meireles MAA, Monteiro AR. Antimicrobial effect of edible coating blend based on turmeric starch residue and gelatin applied onto fresh frankfurter sausage. Food Bioprocess Technol. 2017;10(12):2165–75.

    Article  CAS  Google Scholar 

Download references

Conflicts of Interest

The author declares no conflict of interest.

Acknowledgments

B.L. Koop and A.G. Maciel gratefully acknowledge the Coordination for the Improvement of Higher Education Personnel (CAPES) for their doctoral fellowships. G.A. Valencia would like to thank the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) (grants 2021TR000418 and 2021TR001887). The authors gratefully acknowledge the Federal University of Santa Catarina (UFSC) for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Ayala Valencia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koop, B.L., Maciel, A.G., Soares, L.S., Monteiro, A.R., Valencia, G.A. (2023). Natural Colorants. In: Valencia, G.A. (eds) Natural Additives in Foods. Springer, Cham. https://doi.org/10.1007/978-3-031-17346-2_4

Download citation

Publish with us

Policies and ethics