Skip to main content

Recent Advances in Minimally Invasive Surgery for Spinal Trauma

  • Chapter
  • First Online:
The High-risk Surgical Patient
  • 1348 Accesses

Abstract

Minimally invasive techniques offer decreased disruption of the paraspinal musculature, intraoperative blood loss, and postoperative pain compared to traditional open procedures. Given the benefits of shorter hospital stays and faster rehabilitation and mobility, minimally invasive techniques are becoming increasingly popular for the treatment of traumatic spinal injuries. The purpose of this chapter is to highlight three categories of minimally invasive techniques for traumatic spine fractures: percutaneous pedicle screw instrumentation, vertebral augmentation, and lateral approach interbody fusion. In addition, recent developments in minimally invasive surgery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gertzbein SD, Scoliosis Research Society. Multicenter spine fracture study. Spine (Phila Pa 1976). 1992;17(5):528–40. https://doi.org/10.1097/00007632-199205000-00010.

    Article  CAS  PubMed  Google Scholar 

  2. Bone L. Management of polytrauma. Chapman’s operative orthopaedics. 2nd edn. Philadelphia, PA: JB Lippincott Co, 1993. p. 299.

    Google Scholar 

  3. Phan K, Rao PJ, Mobbs RJ. Percutaneous versus open pedicle screw fixation for treatment of thoracolumbar fractures: systematic review and meta-analysis of comparative studies. Clin Neurol Neurosurg. 2015;135:85–92. https://doi.org/10.1016/j.clineuro.2015.05.016.

    Article  PubMed  Google Scholar 

  4. Vanek P, Bradac O, Konopkova R, de Lacy P, Lacman J, Benes V. Treatment of thoracolumbar trauma by short-segment percutaneous transpedicular screw instrumentation: prospective comparative study with a minimum 2-year follow-up. J Neurosurg Spine. 2014;20(2):150–6. https://doi.org/10.3171/2013.11.SPINE13479.

    Article  PubMed  Google Scholar 

  5. Lee JK, Jang JW, Kim TW, Kim TS, Kim SH, Moon SJ. Percutaneous short-segment pedicle screw placement without fusion in the treatment of thoracolumbar burst fractures: is it effective? Comparative study with open short-segment pedicle screw fixation with posterolateral fusion. Acta Neurochir. 2013;155(12):2305–12. https://doi.org/10.1007/s00701-013-1859-x.

    Article  PubMed  Google Scholar 

  6. Grossbach AJ, Dahdaleh NS, Abel TJ, Woods GD, Dlouhy BJ, Hitchon PW. Flexion-distraction injuries of the thoracolumbar spine: open fusion versus percutaneous pedicle screw fixation. Neurosurg Focus. 2013;35(2):E2. https://doi.org/10.3171/2013.6.FOCUS13176.

    Article  PubMed  Google Scholar 

  7. Bronsard N, Boli T, Challali M, et al. Comparison between percutaneous and traditional fixation of lumbar spine fracture: intraoperative radiation exposure levels and outcomes. Orthop Traumatol Surg Res. 2013;99(2):162–8. https://doi.org/10.1016/j.otsr.2012.12.012.

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Zhou Y, Li C, Liu J, Xiang L. Comparison of open versus percutaneous pedicle screw fixation using the sextant system in the treatment of traumatic thoracolumbar fractures. Clin Spine Surg. 2017;30(3):E239–46. https://doi.org/10.1097/BSD.0000000000000135.

    Article  PubMed  Google Scholar 

  9. Selznick LA, Shamji MF, Isaacs RE. Minimally invasive interbody fusion for revision lumbar surgery: technical feasibility and safety. J Spinal Disord Tech. 2009;22(3):207–13. https://doi.org/10.1097/BSD.0b013e318169026f.

    Article  PubMed  Google Scholar 

  10. Dick W, Kluger P, Magerl F, Woersdörfer O, Zäch G. A new device for internal fixation of thoracolumbar and lumbar spine fractures: the ‘fixateur interne’. Paraplegia. 1985;23(4):225–32. https://doi.org/10.1038/sc.1985.38.

    Article  CAS  PubMed  Google Scholar 

  11. Foley KT, Gupta SK. Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg. 2002;97(1):7–12. https://doi.org/10.3171/spi.2002.97.1.0007.

    Article  PubMed  Google Scholar 

  12. Ni WF, Huang YX, Chi YL, et al. Percutaneous pedicle screw fixation for neurologic intact thoracolumbar burst fractures. J Spinal Disord Tech. 2010;23(8):530–7. https://doi.org/10.1097/BSD.0b013e3181c72d4c.

    Article  PubMed  Google Scholar 

  13. Schmidt OI, Strasser S, Kaufmann V, Strasser E, Gahr RH. Role of early minimal-invasive spine fixation in acute thoracic and lumbar spine trauma. Indian J Orthop. 2007;41(4):374–80. https://doi.org/10.4103/0019-5413.37003.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tian F, Tu LY, Gu WF, et al. Percutaneous versus open pedicle screw instrumentation in treatment of thoracic and lumbar spine fractures: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(41):e12535. https://doi.org/10.1097/MD.0000000000012535.

    Article  PubMed  Google Scholar 

  15. Cimatti M, Forcato S, Polli F, Miscusi M, Frati A, Raco A. Pure percutaneous pedicle screw fixation without arthrodesis of 32 thoraco-lumbar fractures: clinical and radiological outcome with 36-month follow-up. Eur Spine J. 2013;22(Suppl. 6):S925–32. https://doi.org/10.1007/s00586-013-3016-x.

    Article  PubMed  Google Scholar 

  16. Wild MH, Glees M, Plieschnegger C, Wenda K. Five-year follow-up examination after purely minimally invasive posterior stabilization of thoracolumbar fractures: a comparison of minimally invasive percutaneously and conventionally open treated patients. Arch Orthop Trauma Surg. 2007;127(5):335–43. https://doi.org/10.1007/s00402-006-0264-9.

    Article  PubMed  Google Scholar 

  17. Sclafani JA, Kim CW. Complications associated with the initial learning curve of minimally invasive spine surgery: a systematic review. Clin Orthop Relat Res. 2014;472(6):1711–7. https://doi.org/10.1007/s11999-014-3495-z.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee JC, Jang HD, Shin BJ. Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine (Phila Pa 1976). 2012;37(18):1548–57. https://doi.org/10.1097/BRS.0b013e318252d44b.

    Article  PubMed  Google Scholar 

  19. Wang ST, Ma HL, Liu CL, Yu WK, Chang MC, Chen TH. Is fusion necessary for surgically treated burst fractures of the thoracolumbar and lumbar spine? A prospective, randomized study. Spine (Phila Pa 1976). 2006;31(23):2646–53. https://doi.org/10.1097/01.brs.0000244555.28310.40.

    Article  PubMed  Google Scholar 

  20. Chou PH, Ma HL, Wang ST, Liu CL, Chang MC, Yu WK. Fusion may not be a necessary procedure for surgically treated burst fractures of the thoracolumbar and lumbar spines: a follow-up of at least ten years. J Bone Joint Surg Am. 2014;96(20):1724–31. https://doi.org/10.2106/JBJS.M.01486.

    Article  PubMed  Google Scholar 

  21. Dai LY, Jiang LS, Jiang SD. Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures. A five to seven-year prospective randomized study. J Bone Joint Surg Am. 2009;91(5):1033–41. https://doi.org/10.2106/JBJS.H.00510.

    Article  PubMed  Google Scholar 

  22. Dohm M, Black CM, Dacre A, Tillman JB, Fueredi G, KAVIAR investigators. A randomized trial comparing balloon kyphoplasty and vertebroplasty for vertebral compression fractures due to osteoporosis. AJNR Am J Neuroradiol. 2014;35(12):2227–36. https://doi.org/10.3174/ajnr.A4127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Evans AJ, Kip KE, Brinjikji W, et al. Randomized controlled trial of vertebroplasty versus kyphoplasty in the treatment of vertebral compression fractures. J Neurointerv Surg. 2016;8(7):756–63. https://doi.org/10.1136/neurintsurg-2015-011811.

    Article  PubMed  Google Scholar 

  24. Liu JT, Liao WJ, Tan WC, et al. Balloon kyphoplasty versus vertebroplasty for treatment of osteoporotic vertebral compression fracture: a prospective, comparative, and randomized clinical study. Osteoporos Int. 2010;21(2):359–64. https://doi.org/10.1007/s00198-009-0952-8.

    Article  CAS  PubMed  Google Scholar 

  25. Eck JC, Nachtigall D, Humphreys SC, Hodges SD. Comparison of vertebroplasty and balloon kyphoplasty for treatment of vertebral compression fractures: a meta-analysis of the literature. Spine J. 2008;8(3):488–97. https://doi.org/10.1016/j.spinee.2007.04.004.

    Article  PubMed  Google Scholar 

  26. Denoix E, Viry F, Ostertag A, et al. What are the predictors of clinical success after percutaneous vertebroplasty for osteoporotic vertebral fractures? Eur Radiol. 2018;28(7):2735–42. https://doi.org/10.1007/s00330-017-5274-1.

    Article  PubMed  Google Scholar 

  27. Knavel EM, Thielen KR, Kallmes DF. Vertebroplasty for the treatment of traumatic nonosteoporotic compression fractures. AJNR Am J Neuroradiol. 2009;30(2):323–7. https://doi.org/10.3174/ajnr.A1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Teyssédou S, Saget M, Gayet LE, Pries P, Brèque C, Vendeuvre T. Radiologic study of disc behavior following compression fracture of the thoracolumbar hinge managed by kyphoplasty: a 52-case series. Orthop Traumatol Surg Res. 2016;102(1):61–5. https://doi.org/10.1016/j.otsr.2015.11.011.

    Article  PubMed  Google Scholar 

  29. Faciszewski T, Winter RB, Lonstein JE, Denis F, Johnson L. The surgical and medical perioperative complications of anterior spinal fusion surgery in the thoracic and lumbar spine in adults. A review of 1223 procedures. Spine (Phila Pa 1976). 1995;20(14):1592–9. https://doi.org/10.1097/00007632-199507150-00007.

    Article  CAS  PubMed  Google Scholar 

  30. Verlaan JJ, Diekerhof CH, Buskens E, et al. Surgical treatment of traumatic fractures of the thoracic and lumbar spine: a systematic review of the literature on techniques, complications, and outcome. Spine (Phila Pa 1976). 2004;29(7):803–14. https://doi.org/10.1097/01.brs.0000116990.31984.a9.

    Article  CAS  PubMed  Google Scholar 

  31. Eck JC. Minimally invasive corpectomy and posterior stabilization for lumbar burst fracture. Spine J. 2011;11(9):904–8. https://doi.org/10.1016/j.spinee.2011.06.013.

    Article  PubMed  Google Scholar 

  32. Tomycz L, Parker SL, McGirt MJ. Minimally invasive transpsoas L2 corpectomy and percutaneous pedicle screw fixation for osteoporotic burst fracture in the elderly: a technical report. J Spinal Disord Tech. 2015;28(2):53–60. https://doi.org/10.1097/BSD.0b013e318269ca7c.

    Article  PubMed  Google Scholar 

  33. Smith WD, Dakwar E, Le TV, Christian G, Serrano S, Uribe JS. Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine (Phila Pa 1976). 2010;35(26 Suppl):S338–46. https://doi.org/10.1097/BRS.0b013e3182023113.

    Article  PubMed  Google Scholar 

  34. Li X, Zhang J, Tang H, et al. Comparison between posterior short-segment instrumentation combined with lateral-approach interbody fusion and traditional wide-open anterior-posterior surgery for the treatment of thoracolumbar fractures. Medicine (Baltimore). 2015;94(44):e1946. https://doi.org/10.1097/MD.0000000000001946.

    Article  PubMed  Google Scholar 

  35. Hansen-Algenstaedt N, Chiu CK, Chan CY, Lee CK, Schaefer C, Kwan MK. Accuracy and safety of fluoroscopic guided percutaneous pedicle screws in thoracic and lumbosacral spine: a review of 2000 screws. Spine (Phila Pa 1976). 2015;40(17):E954–63. https://doi.org/10.1097/BRS.0000000000000958.

    Article  PubMed  Google Scholar 

  36. Heintel TM, Berglehner A, Meffert R. Accuracy of percutaneous pedicle screws for thoracic and lumbar spine fractures: a prospective trial. Eur Spine J. 2013;22(3):495–502. https://doi.org/10.1007/s00586-012-2476-8.

    Article  PubMed  Google Scholar 

  37. Njoku I, Wanin O, Assey A, et al. Minimally invasive 2D navigation-assisted treatment of thoracolumbar spinal fractures in East Africa: a case report [published correction appears in Cureus. 2016;8(6):c2]. Cureus. 2016;8(2):e507. Published 2016 Feb 23. https://doi.org/10.7759/cureus.507.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mason A, Paulsen R, Babuska JM, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine. 2014;20(2):196–203. https://doi.org/10.3171/2013.11.SPINE13413.

    Article  PubMed  Google Scholar 

  39. Lian X, Navarro-Ramirez R, Berlin C, et al. Total 3D Airo® navigation for minimally invasive transforaminal lumbar interbody fusion. Biomed Res Int. 2016;2016:5027340. https://doi.org/10.1155/2016/5027340.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang P, Chen K, Zhang K, Sun J, Yang H, Mao H. Percutaneous short-segment pedicle instrumentation assisted with O-arm navigation in the treatment of thoracolumbar burst fractures. J Orthop Translat. 2019;21:1–7. Published 2019 Dec 5. https://doi.org/10.1016/j.jot.2019.11.002.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Archavlis E, Schwandt E, Kosterhon M, et al. A modified microsurgical endoscopic-assisted transpedicular corpectomy of the thoracic spine based on virtual 3-dimensional planning. World Neurosurg. 2016;91:424–33. https://doi.org/10.1016/j.wneu.2016.04.043.

    Article  PubMed  Google Scholar 

  42. Gottschalk MB, Yoon ST, Park DK, Rhee JM, Mitchell PM. Surgical training using three- dimensional simulation in placement of cervical lateral mass screws: a blinded randomized control trial. Spine J. 2015;15(1):168–75. https://doi.org/10.1016/j.spinee.2014.08.444.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Ludwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavanaugh, D., Ye, I., Thomson, A.E., Ludwig, S. (2023). Recent Advances in Minimally Invasive Surgery for Spinal Trauma. In: Aseni, P., Grande, A.M., Leppäniemi, A., Chiara, O. (eds) The High-risk Surgical Patient. Springer, Cham. https://doi.org/10.1007/978-3-031-17273-1_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17273-1_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17272-4

  • Online ISBN: 978-3-031-17273-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics