Skip to main content

From “See One, Do One, Teach One” to Hands-On Simulation and Objective Assessment in Surgical Training

  • Chapter
  • First Online:
The High-risk Surgical Patient

Abstract

There is a worldwide demand for methods to train surgeons in a fast, efficient, and low-cost manner. The old adage “see one, do one, teach one” is still widespread in surgical education, even if novel systems may help surgeons acquire significant expertise in a safe, efficient, and effective way. The purpose of this chapter is to assess the state of the art of surgical education to identify the best approaches for the current training of surgeons according to their level and preferences. To date, surgical training on patients themselves is no more feasible. Trainee surgeons should use valid virtual simulators and gradually obtain independence from expert surgeons’ surveillance. Anyway, the systematization of surgical training has not been explored extensively so far. Since appropriate surgical training methods may be correlated with better patient health outcomes and resource-efficient training, further research is mandatory to validate and spread high-performance training models, like a routine for trainee surgeons worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Shea JS. Becoming a surgeon in the early 20th century: parallels to the present. J Surg Educ. 2008;65:236–41.

    PubMed  Google Scholar 

  2. Sealy WC. Halsted is dead: time for change in graduate surgical education. Curr Surg. 1999;56:34–9.

    Google Scholar 

  3. James HK, Gregory RJH. The dawn of a new competency-based training era. Bone Jt Open. 2021;2:181–90.

    PubMed  PubMed Central  Google Scholar 

  4. Klingensmith ME, Lewis FR. General surgery residency training issues. Adv Surg. 2013;47:251–70.

    PubMed  Google Scholar 

  5. McKenna DT, Mattar SG. What is wrong with the training of general surgery? Adv Surg. 2014;48:201–10.

    PubMed  Google Scholar 

  6. Sachdeva AK, Bell RHJ, Britt LD, Tarpley JL, Blair PG, Tarpley MJ. National efforts to reform residency education in surgery. Acad Med. 2007;82:1200–10.

    PubMed  Google Scholar 

  7. Forgione A, Guraya SY. The cutting-edge training modalities and educational platforms for accredited surgical training: a systematic review. J Res Med Sci. 2017;22:51.

    PubMed  PubMed Central  Google Scholar 

  8. Guraya S, Forgione A, Sampogna G, Pugliese R. The mapping of preferred resources for surgical education: perceptions of surgical trainees at the Advanced International Minimally Invasive Surgery Academy (AIMS), Milan, Italy. J Taibah Univ Med Sci. 2015;10:396–404.

    Google Scholar 

  9. Kunert W, Storz P, Dietz N, Axt S, Falch C, Kirschniak A, Wilhelm P. Learning curves, potential and speed in training of laparoscopic skills: a randomised comparative study in a box trainer. Surg Endosc. 2021;35:3303–12.

    PubMed  Google Scholar 

  10. Bilgic E, Kaneva P, Okrainec A, Ritter EM, Schwaitzberg SD, Vassiliou MC. Trends in the Fundamentals of Laparoscopic Surgery® (FLS) certification exam over the past 9 years. Surg Endosc. 2018;32:2101–5.

    PubMed  Google Scholar 

  11. Peters JH, Fried GM, Swanstrom LL, Soper NJ, Sillin LF, Schirmer B, Hoffman K. Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery. 2004;135:21–7.

    PubMed  Google Scholar 

  12. Veneziano D, Canova A, Arnolds M, et al. Performance Improvement (Pi) score: an algorithm to score Pi objectively during E-BLUS hands-on training sessions. A European Association of Urology, Section of Urotechnology (ESUT) project. BJU Int. 2019;123:726–32.

    PubMed  Google Scholar 

  13. Molinas CR, Binda MM, Sisa CM, Campo R. A randomized control trial to evaluate the importance of pre-training basic laparoscopic psychomotor skills upon the learning curve of laparoscopic intra-corporeal knot tying. Gynecol Surg. 2017;14:29.

    PubMed  PubMed Central  Google Scholar 

  14. Nikouline A, Jimenez MC, Okrainec A. Feasibility of remote administration of the fundamentals of laparoscopic surgery (FLS) skills test using Google wearable device. Surg Endosc. 2020;34:443–9.

    PubMed  Google Scholar 

  15. Vassiliou MC, Dunkin BJ, Fried GM, et al. Fundamentals of endoscopic surgery: creation and validation of the hands-on test. Surg Endosc. 2014;28:704–11.

    PubMed  Google Scholar 

  16. Veneziano D, Ahmed K, Van Cleynenbreugel B, et al. Development methodology of the novel endoscopic stone treatment step 1 training/assessment curriculum: an International Collaborative Work by European Association of Urology Sections. J Endourol. 2017;31:934–41.

    PubMed  Google Scholar 

  17. Stahl CC, Minter RM. New models of surgical training. Adv Surg. 2020;54:285–99.

    PubMed  Google Scholar 

  18. Sampogna G, Pugliese R, Elli M, Vanzulli A, Forgione A. Routine clinical application of virtual reality in abdominal surgery. Minim Invasive Ther Allied Technol. 2017;26:135–43.

    PubMed  Google Scholar 

  19. Gallagher AG, Seymour NE, Jordan-Black J-A, Bunting BP, McGlade K, Satava RM. Prospective, randomized assessment of transfer of training (ToT) and transfer effectiveness ratio (TER) of virtual reality simulation training for laparoscopic skill acquisition. Ann Surg. 2013;257:1025–31.

    PubMed  Google Scholar 

  20. Magistri P, Sampogna G, D’Angelo F, Nigri G, Ramacciato G, Di Benedetto F, Forgione A. The transition from virtual reality to real virtuality: advanced imaging and simulation in general surgery. World Cancer Res J. 2016;3:e807.

    Google Scholar 

  21. Sarmah P, Voss J, Ho A, Veneziano D, Somani B. Low vs. high fidelity: the importance of “realism” in the simulation of a stone treatment procedure. Curr Opin Urol. 2017;27:316–22.

    PubMed  Google Scholar 

  22. Fairhurst K, Strickland A, Maddern G. The LapSim virtual reality simulator: promising but not yet proven. Surg Endosc. 2011;25:343–55.

    PubMed  Google Scholar 

  23. Alwaal A, Al-Qaoud TM, Haddad RL, Alzahrani TM, Delisle J, Anidjar M. Transfer of skills on LapSim virtual reality laparoscopic simulator into the operating room in urology. Urol Ann. 2015;7:172–6.

    PubMed  PubMed Central  Google Scholar 

  24. Brinkmann C, Fritz M, Pankratius U, Bahde R, Neumann P, Schlueter S, Senninger N, Rijcken E. Box- or virtual-reality trainer: which tool results in better transfer of laparoscopic basic skills?—a prospective randomized trial. J Surg Educ. 2017;74:724–35.

    PubMed  Google Scholar 

  25. Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, Satava RM. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236:458–64.

    PubMed  PubMed Central  Google Scholar 

  26. Robertson JM, Dias RD, Yule S, Smink DS. Operating room team training with simulation: a systematic review. J Laparoendosc Adv Surg Tech A. 2017;27:475–80.

    PubMed  Google Scholar 

  27. Paige JT, Garbee DD, Kozmenko V, Yu Q, Kozmenko L, Yang T, Bonanno L, Swartz W. Getting a head start: high-fidelity, simulation-based operating room team training of interprofessional students. J Am Coll Surg. 2014;218:140–9.

    PubMed  Google Scholar 

  28. Izard SG, Juanes JA, García Peñalvo FJ, Estella JMG, Ledesma MJS, Ruisoto P. Virtual reality as an educational and training tool for medicine. J Med Syst. 2018;42:50.

    PubMed  Google Scholar 

  29. Verhey JT, Haglin JM, Verhey EM, Hartigan DE. Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robot. 2020;16:e2067.

    PubMed  Google Scholar 

  30. Elmi-Terander A, Skulason H, Söderman M, Racadio J, Homan R, Babic D, van der Vaart N, Nachabe R. Surgical navigation technology based on augmented reality and integrated 3D intraoperative imaging: a Spine Cadaveric Feasibility and Accuracy Study. Spine (Phila Pa 1976). 2016;41:E1303–11.

    PubMed  Google Scholar 

  31. Gasteratos K, Paladino JR, Akelina Y, Mayer HF. Superiority of living animal models in microsurgical training: beyond technical expertise. Eur J Plast Surg. 2021;44(2):167–76.

    PubMed  PubMed Central  Google Scholar 

  32. Akelina Y. Applying the “3 Rs”: training course in surgical techniques. Lab Anim (NY). 2003;32:41–4.

    PubMed  Google Scholar 

  33. Mutter D, Dallemagne B, Perretta S, Vix M, Leroy J, Pessaux P, Marescaux J. Innovations in minimally invasive surgery: lessons learned from translational animal models. Langenbecks Arch Surg. 2013;398:919–23.

    CAS  PubMed  Google Scholar 

  34. Evans LL, Harrison MR. Modern fetal surgery-a historical review of the happenings that shaped modern fetal surgery and its practices. Transl Pediatr. 2021;10:1401–17.

    PubMed  PubMed Central  Google Scholar 

  35. Kumar R, Singh R. Model pedagogy of human anatomy in medical education. Surg Radiol Anat. 2020;42:355–65.

    PubMed  Google Scholar 

  36. James HK, Chapman AW, Pattison GTR, Griffin DR, Fisher JD. Systematic review of the current status of cadaveric simulation for surgical training. Br J Surg. 2019;106:1726–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sachdeva AK. Preceptoring, proctoring, mentoring, and coaching in surgery. J Surg Oncol. 2021;124:711–21.

    PubMed  Google Scholar 

  38. De Pastena M, Salvia R, Paiella S, et al. Robotic dual-console distal pancreatectomy: could it be considered a safe approach and surgical teaching even in pancreatic surgery? A retrospective observational study cohort. World J Surg. 2021;45:3191–7.

    PubMed  PubMed Central  Google Scholar 

  39. Zorn KC, Gautam G, Shalhav AL, et al. Training, credentialing, proctoring and medicolegal risks of robotic urological surgery: recommendations of the society of urologic robotic surgeons. J Urol. 2009;182:1126–32.

    PubMed  Google Scholar 

  40. Dorsey ER, Topol EJ. Telemedicine 2020 and the next decade. Lancet (London, England). 2020;395:859.

    PubMed  Google Scholar 

  41. Doraiswamy S, Abraham A, Mamtani R, Cheema S. Use of telehealth during the COVID-19 pandemic: scoping review. J Med Internet Res. 2020;22:e24087.

    PubMed  PubMed Central  Google Scholar 

  42. Bogen EM, Augestad KM, Patel HR, Lindsetmo R-O. Telementoring in education of laparoscopic surgeons: an emerging technology. World J Gastrointest Endosc. 2014;6:148–55.

    PubMed  PubMed Central  Google Scholar 

  43. Forgione A, Kislov V, Guraya SY, Kasakevich E, Pugliese R. Safe introduction of laparoscopic colorectal surgery even in remote areas of the world: the value of a comprehensive telementoring training program. J Laparoendosc Adv Surg Tech A. 2015;25:37–42.

    PubMed  Google Scholar 

  44. Santomauro M, Reina GA, Stroup SP, L’Esperance JO. Telementoring in robotic surgery. Curr Opin Urol. 2013;23:141–5.

    PubMed  Google Scholar 

  45. Mutter D, Vix M, Dallemagne B, Perretta S, Leroy J, Marescaux J. WeBSurg: an innovative educational web site in minimally invasive surgery—principles and results. Surg Innov. 2011;18:8–14.

    PubMed  Google Scholar 

  46. Hope C, Reilly J-J, Griffiths G, Lund J, Humes D. The impact of COVID-19 on surgical training: a systematic review. Tech Coloproctol. 2021;25:505–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosser JCJ, Lynch PJ, Cuddihy L, Gentile DA, Klonsky J, Merrell R. The impact of video games on training surgeons in the 21st century. Arch Surg. 2007;142:181–6; discusssion 186.

    PubMed  Google Scholar 

  48. Adams BJ, Margaron F, Kaplan BJ. Comparing video games and laparoscopic simulators in the development of laparoscopic skills in surgical residents. J Surg Educ. 2012;69:714–7.

    PubMed  Google Scholar 

  49. Gupta A, Lawendy B, Goldenberg MG, Grober E, Lee JY, Perlis N. Can video games enhance surgical skills acquisition for medical students? A systematic review. Surgery. 2021;169:821–9.

    PubMed  Google Scholar 

  50. Boyd T, Jung I, Van Sickle K, Schwesinger W, Michalek J, Bingener J. Music experience influences laparoscopic skills performance. JSLS. 2008;12:292–4.

    PubMed  PubMed Central  Google Scholar 

  51. Sun RR, Wang Y, Fast A, Dutka C, Cadogan K, Burton L, Kubay C, Drachenberg D. Influence of musical background on surgical skills acquisition. Surgery. 2021;170:75–80.

    PubMed  Google Scholar 

  52. Sun R, Mohaghegh M, Sidhom K, Burton L, Bansal R, Patel P. Are there predictors of flexible ureteroscopic aptitude among novice trainees? Objective assessment using simulation-based trainer. World J Urol. 2022;40(3):823–9. https://doi.org/10.1007/s00345-021-03846-8.

    Article  PubMed  Google Scholar 

  53. Nagyné Elek R, Haidegger T. Non-technical skill assessment and mental load evaluation in robot-assisted minimally invasive surgery. Sensors (Basel). 2021;21(8):2666. https://doi.org/10.3390/s21082666.

    Article  PubMed  Google Scholar 

  54. Pradarelli JC, Gupta A, Lipsitz S, Blair PG, Sachdeva AK, Smink DS, Yule S. Assessment of the non-technical skills for surgeons (NOTSS) framework in the USA. Br J Surg. 2020;107:1137–44.

    CAS  PubMed  Google Scholar 

  55. Jaschinski T, Mosch CG, Eikermann M, Neugebauer EA, Sauerland S. Laparoscopic versus open surgery for suspected appendicitis. Cochrane Database Syst Rev. 2018;11:CD001546.

    PubMed  Google Scholar 

  56. You C, Du Y, Wang H, Peng L, Wei T, Zhang X, Li X, Wang A. Laparoscopic versus open partial nephrectomy: a systemic review and meta-analysis of surgical, oncological, and functional outcomes. Front Oncol. 2020;10:583979.

    PubMed  PubMed Central  Google Scholar 

  57. Kasai M, Cipriani F, Gayet B, et al. Laparoscopic versus open major hepatectomy: a systematic review and meta-analysis of individual patient data. Surgery. 2018;163:985–95.

    PubMed  Google Scholar 

  58. Stommel MWJ, Ten Broek RPG, Strik C, et al. Multicenter observational study of adhesion formation after open-and laparoscopic surgery for colorectal cancer. Ann Surg. 2018;267:743–8.

    PubMed  Google Scholar 

  59. Ertürk Ş, Erzincanlı F. Design and development of a non-contact robotic gripper for tissue manipulation in minimally invasive surgery. Acta Biomed. 2020;91:e2020071.

    PubMed  PubMed Central  Google Scholar 

  60. Alleblas CCJ, Vleugels MPH, Coppus SFPJ, Nieboer TE. The effects of laparoscopic graspers with enhanced haptic feedback on applied forces: a randomized comparison with conventional graspers. Surg Endosc. 2017;31:5411–7.

    PubMed  PubMed Central  Google Scholar 

  61. Cooper MA, Hutfless S, Segev DL, Ibrahim A, Lyu H, Makary MA. Hospital level under-utilization of minimally invasive surgery in the United States: retrospective review. BMJ. 2014;349:g4198.

    PubMed  PubMed Central  Google Scholar 

  62. Feldman LS, Rosenthal RJ. Why is laparoscopic surgery underutilised? Lancet (London, England). 2020;395:3–4.

    PubMed  Google Scholar 

  63. Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery. World J Surg. 2016;40:2550–7.

    PubMed  Google Scholar 

  64. Sticca RP, Burchill KJ, Johnson SW. Advanced technology and the rural surgeon. Surg Clin North Am. 2020;100:909–20.

    PubMed  Google Scholar 

  65. Chao TE, Mandigo M, Opoku-Anane J, Maine R. Systematic review of laparoscopic surgery in low- and middle-income countries: benefits, challenges, and strategies. Surg Endosc. 2016;30:1–10.

    PubMed  Google Scholar 

  66. Lacy AM, Borja De Lacy F, Valverde S. Transluminal cancer surgery. Surg Oncol Clin N Am. 2019;28:101–13.

    PubMed  Google Scholar 

  67. Ullah S, Ali FS, Liu B-R. Advancing flexible endoscopy to natural orifice transluminal endoscopic surgery. Curr Opin Gastroenterol. 2021;37:470–7.

    PubMed  Google Scholar 

  68. Nakaseko Y, Ishizawa T, Saiura A. Fluorescence-guided surgery for liver tumors. J Surg Oncol. 2018;118:324–31.

    PubMed  Google Scholar 

  69. Kochanski RB, Lombardi JM, Laratta JL, Lehman RA, O’Toole JE. Image-guided navigation and robotics in spine surgery. Neurosurgery. 2019;84:1179–89.

    PubMed  Google Scholar 

  70. Jin H, Liu J. Application of the hybrid operating room in surgery: a systematic review. J Invest Surg. 2022;35(2):378–89.

    PubMed  Google Scholar 

  71. Raveesh BN, Nayak RB, Kumbar SF. Preventing medico-legal issues in clinical practice. Ann Indian Acad Neurol. 2016;19:S15–20.

    PubMed  PubMed Central  Google Scholar 

  72. Agha RA, Fowler AJ. The role and validity of surgical simulation. Int Surg. 2015;100:350–7.

    PubMed  PubMed Central  Google Scholar 

  73. Conrad C, Wakabayashi G, Asbun HJ, et al. IRCAD recommendation on safe laparoscopic cholecystectomy. J Hepatobiliary Pancreat Sci. 2017;24:603–15.

    PubMed  Google Scholar 

  74. Stefanidis D, Yonce TC, Green JM, Coker AP. Cadavers versus pigs: which are better for procedural training of surgery residents outside the OR? Surgery. 2013;154:34–7.

    PubMed  Google Scholar 

  75. Hoopes S, Pham T, Lindo FM, Antosh DD. Home surgical skill training resources for obstetrics and gynecology trainees during a pandemic. Obstet Gynecol. 2020;136:56–64.

    PubMed  Google Scholar 

  76. Atesok K, Satava RM, Marsh JL, Hurwitz SR. Measuring surgical skills in simulation-based training. J Am Acad Orthop Surg. 2017;25:665–72.

    PubMed  Google Scholar 

  77. Reznick R, Regehr G, MacRae H, Martin J, McCulloch W. Testing technical skill via an innovative “bench station” examination. Am J Surg. 1997;173:226–30.

    CAS  PubMed  Google Scholar 

  78. Alvand A, Logishetty K, Middleton R, Khan T, Jackson WFM, Price AJ, Rees JL. Validating a global rating scale to monitor individual resident learning curves during arthroscopic knee meniscal repair. Arthroscopy. 2013;29:906–12.

    PubMed  Google Scholar 

  79. Sadideen H, Alvand A, Saadeddin M, Kneebone R. Surgical experts: born or made? Int J Surg. 2013;11:773–8.

    PubMed  Google Scholar 

  80. Tulipan J, Miller A, Park AG, Labrum JT 4th, Ilyas AM. Touch surgery: analysis and assessment of validity of a hand surgery simulation “App”. Hand (N Y). 2019;14:311–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Forgione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forgione, A., Sampogna, G. (2023). From “See One, Do One, Teach One” to Hands-On Simulation and Objective Assessment in Surgical Training. In: Aseni, P., Grande, A.M., Leppäniemi, A., Chiara, O. (eds) The High-risk Surgical Patient. Springer, Cham. https://doi.org/10.1007/978-3-031-17273-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17273-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17272-4

  • Online ISBN: 978-3-031-17273-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics