Skip to main content

Unusual Chemical Reactivity at Low Temperatures of Buckminsterfullerene C60

  • Chapter
  • First Online:
Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications

Abstract

Unusual properties of buckminsterfullerene C60 were explored, which reacted more efficiently with primary and secondary amines at low temperatures than at elevated temperatures in a solvent, such as benzene, toluene, and xylene. Low temperatures favor the formation of a charge-transfer complex, which can be detected by UV spectrometry. Furthermore, a series of electron spin resonance experiments were performed at various low temperatures to detect the formation of C60•–. The “low-temperature” acceleration effect on the amination of fullerene C60 is closely related to solvent and temperatures. The new findings provide an avenue to functionalize buckminsterfullerene C60 so that the resultant adducts may have controllable solubility in various media. The outcome may offer a solution to enhance its biological and medicinal applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anslyn, E.V., Dougherty, D.A.: Modern Physical Organic Chemistry. University Science, Mill Valley (2005)

    Google Scholar 

  2. Kroto, H.W.: The story of C60 buckminsterfullerene. In: Bawa, R., Audette, G.F., Rubinstein. I. (eds.) Handbook of Clinical Nanomedicine: Nanoparticles, Imaging, Therapy, and Clinical Applications, pp. 409–434. Jenny Stanford, Centennial Tower, Singapore (2016)

    Google Scholar 

  3. Evstigneev, M.P., Buchelnikov, A.S., Voronin, D.P., Rubin, Y.V., Belous, L.F., Prylutskyy, Y.I., Ritter, U.: Complexation of C60 fullerene with aromatic drugs. ChemPhysChem 14(3), 568–578 (2013)

    Article  CAS  Google Scholar 

  4. For examples, see (a) Suzuki, H., Nakano, M., Hashikawa, Y., Murata, Y.: Rotational motion and nuclear spin interconversion of H2O encapsulated in C60 appearing in the low-temperature heat capacity. J. Phys. Chem. Lett. 10(6), 1306–1311 (2019); (b) Lin, J., Zhong, Z., Li, Q., Tan, Z., Lin, T., Quan, Y., Zhang, D.: Facile low-temperature synthesis of cellulose nanocrystals carrying buckminsterfullerene and its radical scavenging property in vitro. Biomacromolecules 18(12), 4034–4040 (2017); (c) Michinobu, T., Okoshi, K., Murakami, Y., Shigehara, K., Ariga, K., Nakanishi, T.: Structural requirements for producing solvent-free room temperature liquid fullerenes. Langmuir 29(17), 5337–5344 (2013)

    Google Scholar 

  5. Carey, F.A., Sundberg, R.J.: Advanced Organic Chemistry, 5th edn. Springer, New York (2007)

    Google Scholar 

  6. Hirsch, A., Li, Q., Wudl, F.: Globe-trotting hydrogens on the surface of the fullerene compound C60H6(N(CH2CH2)2O)6. Angew. Chem. Int. Ed. Engl. 30(10), 1309–1310 (1991)

    Article  Google Scholar 

  7. For related works, see (a) Wu, S.-L., Gao, X.: Copper-catalyzed aerobic oxidative reaction of C60 with aliphatic primary amines and CS2. J. Org. Chem. 83(4), 2125–2130 (2018); (b) Lim, S.H., Jeong, H.C., Sohn, Y., Kim, Y.-I., Cho, D.W., Woo, H.-J., Shin, I.-S., Yoon, U.C., Mariano, P.S.: Single electron transfer-promoted photochemical reactions of secondary N-trimethylsilylmethyl-n-benzylamines leading to aminomethylation of fullerene C60. J. Org. Chem. 81(6), 2460–2473 (2016)

    Google Scholar 

  8. Hashimoto, A., Takamura-Enya, T., Oda, Y.: Synthesis and in vitro biological evaluation of psoralen-linked fullerenes. Photochem. Photobiol. 95(6), 1403–1411 (2019)

    Article  CAS  Google Scholar 

  9. Ma, H., Zhao, J., Meng, H., Hu, D., Zhou, Y., Zhang, X., Wang, C., Li, J., Yuan, J., Wei, Y.: Carnosine-modified fullerene as a highly enhanced ROS scavenger for mitigating acute oxidative stress. ACS Appl. Mater. Interfaces 12(14), 16104–16113 (2020)

    Article  CAS  Google Scholar 

  10. Gudkov, S.V., Guryev, E.L., Gapeyev, A.B., Sharapov, M.G., Bunkin, N.F., Shkirin, A.V., Zabelina, T.S., Glinushkin, A.P., Sevost’yanov, M.A., Belosludtsev, K.N., Chernikov, A.V., Bruskov, V.I., Zvyagin, A.V.: Unmodified hydrated C60 fullerene molecules exhibit antioxidant properties, prevent damage to DNA and proteins induced by reactive oxygen species and protect mice against injuries caused by radiation-induced oxidative stress. Nanomed. Nanotechnol. Biol. Med. 15(1), 37–46 (2019)

    Article  CAS  Google Scholar 

  11. Dellinger, A.L., Zhou, Z., MacFarland, D., Sandros, M.G., Sawafta, A., Kepley, C.L.: Molecular interactions of fullerene derivatives in human serum and inflammatory cells. Insci. J. 1(3), 102–114 (2011)

    Article  CAS  Google Scholar 

  12. Acton, O., Grant, T., Nicastro, G., Ball, N.J., Goldstone, D.C., Robertson, L.E., Sader, K., Nans, A., Ramos, A., Stoye, J.P., Taylor, I.A., Rosenthal, P.B.: Structural basis for fullerene geometry in a human endogenous retrovirus capsid. Nat. Commun. 10, 5822 (2019). https://doi.org/10.1038/s41467-019-13786-y

    Article  CAS  Google Scholar 

  13. Kazemzadeh, H., Mozafari, M.: Fullerene-based delivery systems. Drug Discov. Today 24(3), 898–905 (2019)

    Article  CAS  Google Scholar 

  14. Hirsch, A., Brettreich, M.: Fullerenes: Chemistry and Reactions. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  15. Rašović, I.: Water-soluble fullerenes for medical applications. Mater. Sci. Technol. 33(7), 777–794 (2016)

    Article  Google Scholar 

  16. Castro, E., Garcia, A.H., Zavala, G., Echegoyen, L.: Fullerenes in biology and medicine. J. Mater. Chem. B 5(32), 6523–6535 (2017)

    Article  CAS  Google Scholar 

  17. Wudl, F., Hirsch, A., Khemani, K.C., Suzuki, T., Allemand, P.-M., Koch, A., Srdanov, G., Webb, H.M.: Survey of chemical reactivity of C60, electrophile and dieno—polarophile par excellence. ACS Symp. Ser. 481, 161–175 (1992)

    Article  CAS  Google Scholar 

  18. Moriyama, H., Kobayashi, H., Kobayashi, A., Watanabe, T.: Electrocrystallization and ESR spectra of the single crystal [N(P(C6H5)3)2].C60. J. Am. Chem. Soc. 115(3), 1185–1187 (1993)

    Google Scholar 

  19. Wang, Y., Cheng, L.-T.: Nonlinear optical properties of fullerenes and charge-transfer complexes of fullerenes. J. Phys. Chem. 96(4), 1530–1532 (1992)

    Article  CAS  Google Scholar 

  20. Ghosh, H.N., Pal, H., Sapre, A.V., Mittal, J.P.: Charge recombination reactions in photoexcited fullerene C60-amine complexes studied by picosecond pump probe spectroscopy. J. Am. Chem. Soc. 115(25), 11722–11727 (1993)

    Article  CAS  Google Scholar 

  21. Sun, Y.-P., Bunker, C.E., Ma, B.: Quantitative studies of ground and excited state charge transfer complexes of fullerenes with N, N-dimethylaniline and N, N-diethylaniline. J. Am. Chem. Soc. 116(21), 9692–9699 (1994)

    Article  CAS  Google Scholar 

  22. Li, J., Feng, J., Sun, C.: Calculations on the electronic structure and nonlinear second-order optical susceptibility of the C60/aniline charge-transfer complex. J. Phys. Chem. 98(35), 8636–8640 (1994)

    Article  CAS  Google Scholar 

  23. Konarev, D.V., Troyanov, S.I., Otsuka, A., Yamochi, H., Saito, G., Lyubovskaya, R.N.: Charge transfer complexes of fullerenes containing C60· and C70· radical anions with paramagnetic CoII(dppe)2Cl+ cations (dppe: 1,2-bis(diphenylphosphino)ethane). Dalton Trans. 45(15), 6548–6554 (2016)

    Article  CAS  Google Scholar 

  24. Seshadri, R., Rao, C.N.R., Pal, H., Mukherjee, T., Mittal, J.P.: Interaction of C60 and C70 with aromatic amines in the ground and excited states. evidence for fullerene—benzene interaction in the ground state. Chem. Phys. Lett. 205(4–5), 395–398 (1993)

    Google Scholar 

  25. Zhou, Z., Xu, S., Song, J., Jin, Y., Yue, Q., Qian, Y., Liu, F., Zhang, F., Zhu, X.: High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 3, 952–959 (2018)

    Article  CAS  Google Scholar 

  26. Song, H., Lee, K., Choi, M.-G., Park, J.T.: [60]Fullerene as a versatile four-electron donor ligand. Organometallics 21(9), 1756–1758 (2002)

    Article  CAS  Google Scholar 

  27. Hwu, J.R., Kuo, T.-Y., Chang, T.M., Patel, H.V., Yong, K.-T.: Amination of buckminsterfullerene C60 at low temperature: application in polyamide synthesis. Fullerene Sci. Technol. 4(3), 407–422 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For financial support, we thank Ministry of Science and Technology (Grant Nos. 110-2113-M-007-011 and 110-2634-F-007-023) and Ministry of Education (Grant Nos. 109QR001I5 and 110QR001I5) of R.O.C. We also thank the MOST in Taiwan for supporting The Featured Areas Research Center Program within the Framework of the Higher Education Sprout Project through the Frontier Research Center on Fundamental and Applied Sciences of Matters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jih Ru Hwu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hwu, J.R. et al. (2023). Unusual Chemical Reactivity at Low Temperatures of Buckminsterfullerene C60. In: Najman, S., et al. Bioceramics, Biomimetic and Other Compatible Materials Features for Medical Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-17269-4_13

Download citation

Publish with us

Policies and ethics