Skip to main content

On Quantum Ciphertext Indistinguishability, Recoverability, and OAEP

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13512))

Included in the following conference series:

  • 678 Accesses

Abstract

The qINDqCPA security notion for public-key encryption schemes by Gagliardoni et al. (PQCrypto’21) models security against adversaries which are able to obtain ciphertexts in superposition. Defining this security notion requires a special type of quantum operator. Known constructions differ in which keys are necessary to construct this operator, depending on properties of the encryption scheme.

We argue—for the typical setting of securing communication between Alice and Bob—that in order to apply the notion, the quantum operator should be realizable for challengers knowing only the public key. This is already known to be the case for a wide range of public-key encryption schemes, in particular, those exhibiting the so-called recoverability property which allows to recover the message from a ciphertext using the randomness instead of the secret key.

The open question is whether there are real-world public-key encryption schemes for which the notion is not applicable, considering the aforementioned observation on the keys known by the challenger. We answer this question in the affirmative by showing that applying the qINDqCPA security notion to the OAEP construction requires the challenger to know the secret key. We conclude that the qINDqCPA security notion might need to be refined to eventually yield a universally applicable PKE notion of quantum security with a quantum indistinguishability phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this oracle is important in case the adversary cannot locally implement this oracle. Without it, the standard simplification to a single challenge via a hybrid argument does not work.

  2. 2.

    Note that there are other security notions [8, 12, 28] which only require an xor operator. However, the relation between these different approaches is not completely understood and requires more research.

  3. 3.

    The full version of both works appeared within a week.

  4. 4.

    For simplicity we ignore how cheating adversaries, which forward a response from the encryption to the decryption oracle, are prevented. For a detailed discussion on this, we refer to [5].

  5. 5.

    When using the FO transformation [16], the public key is mandatory for the re-encrypting part. This dependence is often implicit, e.g., schemes such as Kyber [32] and Saber [13] specify the secret key to already include the public key.

  6. 6.

    Note that we consider the CPA-secure variant of OAEP for simplicity. The CCA-secure variant pads the message with additional 0 s.

References

  1. Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol. 12107, pp. 788–817. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_27

    Chapter  Google Scholar 

  2. Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_3

    Chapter  Google Scholar 

  3. Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_4

    Chapter  MATH  Google Scholar 

  4. Bellare, M., Davis, H., Günther, F.: Separate your domains: NIST PQC KEMs, Oracle cloning and read-only indifferentiability. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 3–32. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_1

    Chapter  Google Scholar 

  5. Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA: when and how should challenge decryption be disallowed? J. Cryptol. 28(1), 29–48 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053428

    Chapter  Google Scholar 

  7. Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_35

    Chapter  Google Scholar 

  8. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21

    Chapter  MATH  Google Scholar 

  9. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Yu., Schrottenloher, A.: Quantum attacks without superposition queries: the offline Simon’s algorithm. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921, pp. 552–583. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_20

    Chapter  Google Scholar 

  10. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 492–519. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_20

    Chapter  Google Scholar 

  11. Carstens, T.V., Ebrahimi, E., Tabia, G.N., Unruh, D.: Relationships between quantum IND-CPA notions. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 240–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_9

    Chapter  Google Scholar 

  12. Chevalier, C., Ebrahimi, E., Vu, Q.-H.: On security notions for encryption in a quantum world. Cryptology ePrint Archive, Report 2020/237 (2020). https://eprint.iacr.org/2020/237

  13. D’Anvers, J.-P., et al.: SABER. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

  14. Doosti, M., Delavar, M., Kashefi, E., Arapinis, M.: A unified framework for quantum unforgeability. CoRR, abs/2103.13994 (2021)

    Google Scholar 

  15. Ebrahimi, E.: Post-quantum security of plain OAEP transform. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022. LNCS, vol. 13177, pp. 34–51. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_2

    Chapter  Google Scholar 

  16. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013)

    Article  MathSciNet  Google Scholar 

  17. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. J. Cryptol. 17(2), 81–104 (2004)

    Article  MathSciNet  Google Scholar 

  18. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguishability in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_3

    Chapter  MATH  Google Scholar 

  19. Gagliardoni, T., Krämer, J., Struck, P.: Quantum indistinguishability for public key encryption. In: Cheon, J.H., Tillich, J.-P. (eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 463–482. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_24. Most of the content we refer to in this work is only included in the full version of the paper. For the full version, we refer to Cryptology ePrint Archive, Report 2020/266, https://eprint.iacr.org/2020/266

  20. Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for authentication of quantum data. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 342–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_12

    Chapter  Google Scholar 

  21. Hosoyamada, A., Sasaki, Yu.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic feistel constructions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_21

    Chapter  Google Scholar 

  22. Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Yu., Iwata, T.: Quantum chosen-ciphertext attacks against feistel ciphers. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 391–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_20

    Chapter  Google Scholar 

  23. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8

    Chapter  Google Scholar 

  24. Kashefi, E., Kent, A., Vedral, V., Banaszek, K.: Comparison of quantum oracles. Phys. Rev. A 65, 050304 (2002)

    Google Scholar 

  25. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round feistel cipher and the random permutation. In: IEEE International Symposium on Information Theory, ISIT 2010, 13–18 June 2010, Austin, Texas, USA, Proceedings, pp. 2682–2685 (2010)

    Google Scholar 

  26. Kuwakado, H., Morii, M.: Security on the quantum-type even-mansour cipher. In: Proceedings of the International Symposium on Information Theory and its Applications, ISITA 2012, Honolulu, HI, USA, 28–31 October 2012, pp. 312–316 (2012)

    Google Scholar 

  27. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_6

    Chapter  Google Scholar 

  28. Mossayebi, S., Schack, R.: Concrete security against adversaries with quantum superposition access to encryption and decryption oracles. CoRR, abs/1609.03780 (2016)

    Google Scholar 

  29. Nemoz, T., Amblard, Z., Dupin, A.: Characterizing the qIND-qCPA (in)security of the CBC, CFB, OFB and CTR modes of operation. IACR Cryptol. ePrint Arch. 236 (2022)

    Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press (2016)

    Google Scholar 

  31. Rötteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process. Lett. 115(1), 40–44 (2015)

    Article  Google Scholar 

  32. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

  33. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press, November 1994

    Google Scholar 

  34. Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 239–259. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_15

    Chapter  Google Scholar 

  35. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_8

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

We thank Nina Bindel for fruitful discussions on the OAEP construction. We also thank Mariami Gachechiladze for helpful discussions about quantum channels. This work was funded by the Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Struck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krämer, J., Struck, P. (2022). On Quantum Ciphertext Indistinguishability, Recoverability, and OAEP. In: Cheon, J.H., Johansson, T. (eds) Post-Quantum Cryptography. PQCrypto 2022. Lecture Notes in Computer Science, vol 13512. Springer, Cham. https://doi.org/10.1007/978-3-031-17234-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17234-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17233-5

  • Online ISBN: 978-3-031-17234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics