Skip to main content

New Strategies for Learning Knowledge Graph Embeddings: The Recommendation Case

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2022)

Abstract

Knowledge graph embedding models encode elements of a graph into a low-dimensional space that supports several downstream tasks. This work is concerned with the recommendation task, which we approach as a link prediction task on a single target relation performed in the embedding space. Training an embedding model requires negative sampling, which consists in corrupting the head or the tail of positive triples to generate negative ones. Although knowledge graph embedding models and negative sampling have extensively been investigated for link prediction, their combined use for performing recommendations over knowledge graphs remains largely unexplored in the literature. In this work, we propose two specialization strategies for training embedding models and performing knowledge graph-based recommendations. Both strategies first train an embedding model on the whole knowledge graph. Then, during a specialization phase, a dedicated negative sampling scheme is applied to refine the pre-trained model. Experimental results on two public datasets demonstrate that a simple strategy which refines a pre-trained model by sampling random negative tails for the target relation proves to be very effective. This strategy significantly improves performance with respect to traditional rank-based evaluation metrics as well as a newly introduced metric that reflects the semantic validity of the top-ranked candidate entities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    purl.org/edukg/doc.

References

  1. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Conference on Neural Information Processing Systems (NeurIPS) 2013, pp. 2787–2795 (2013)

    Google Scholar 

  2. Cai, L., Wang, W.Y.: KBGAN: adversarial learning for knowledge graph embeddings. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics, pp. 1470–1480 (2018)

    Google Scholar 

  3. Chowdhury, G., Srilakshmi, M., Chain, M., Sarkar, S.: Neural factorization for offer recommendation using knowledge graph embeddings. In: Proceedings of the SIGIR Workshop on eCommerce, vol. 2410 (2019)

    Google Scholar 

  4. Edwards, G., Nilsson, S., Rozemberczki, B., Papa, E.: Explainable biomedical recommendations via reinforcement learning reasoning on knowledge graphs. arXiv preprint arXiv:2111.10625 (2021)

  5. Gao, C., Wang, X., He, X., Li, Y.: Graph neural networks for recommender system. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 1623–1625 (2022)

    Google Scholar 

  6. Grad-Gyenge, L., Kiss, A., Filzmoser, P.: Graph embedding based recommendation techniques on the knowledge graph. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP, pp. 354–359 (2017)

    Google Scholar 

  7. Hajimoradlou, A., Kazemi, M.: Stay positive: knowledge graph embedding without negative sampling. arXiv preprint arXiv:2201.02661 (2022)

  8. Islam, M.K., Aridhi, S., Smail-Tabbone, M.: Negative sampling and rule mining for explainable link prediction in knowledge graphs. Knowl. Based Syst. 250 (2022)

    Google Scholar 

  9. Jain, N., Kalo, J.-C., Balke, W.-T., Krestel, R.: Do embeddings actually capture knowledge graph semantics? In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 143–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_9

  10. Jain, N., Tran, T.-K., Gad-Elrab, M.H., Stepanova, D.: Improving knowledge graph embeddings with ontological reasoning. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 410–426. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_24

  11. Kadlec, R., Bajgar, O., Kleindienst, J.: Knowledge base completion: baselines strike back. In: Proceedings of the 2nd Workshop on Representation Learning for NLP, Rep4NLP@ACL, pp. 69–74 (2017)

    Google Scholar 

  12. Kotnis, B., Nastase, V.: Analysis of the impact of negative sampling on link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816 (2017)

  13. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 640–655. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_37

  14. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2181–2187. AAAI Press (2015)

    Google Scholar 

  15. Liu, C., Li, L., Yao, X., Tang, L.: A survey of recommendation algorithms based on knowledge graph embedding. In: 2019 IEEE International Conference on Computer Science and Educational Informatization (CSEI), pp. 168–171 (2019)

    Google Scholar 

  16. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning, ICML, pp. 809–816 (2011)

    Google Scholar 

  17. Palumbo, E., Rizzo, G., Troncy, R., Baralis, E., Osella, M., Ferro, E.: Translational models for item recommendation. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 11155, pp. 478–490. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98192-5_61

  18. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data 15(2), 141–1449 (2021)

    Article  Google Scholar 

  19. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space. In: 7th International Conference on Learning Representations, ICLR (2019)

    Google Scholar 

  20. Tran, H.N., Takasu, A.: Exploring scholarly data by semantic query on Knowledge Graph Embedding Space. In: Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A. (eds.) TPDL 2019. LNCS, vol. 11799, pp. 154–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30760-8_14

  21. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on Machine Learning, ICML, vol. 48, pp. 2071–2080 (2016)

    Google Scholar 

  22. Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link prediction. Symmetry 13(3), 485 (2021)

    Article  Google Scholar 

  23. Wang, P., Li, S., Pan, R.: Incorporating GAN for negative sampling in knowledge representation learning. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp. 2005–2012 (2018)

    Google Scholar 

  24. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  25. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1112–1119 (2014)

    Google Scholar 

  26. Weyns, M., Bonte, P., Steenwinckel, B., Turck, F.D., Ongenae, F.: Conditional constraints for knowledge graph embeddings. In: Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG@ISWC), vol. 2635 (2020)

    Google Scholar 

  27. Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in recommender systems: a survey. ACM Comput. Surv. (2020)

    Google Scholar 

  28. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: 3rd International Conference on Learning Representations, ICLR (2015)

    Google Scholar 

  29. Yang, Z., Ding, M., Zhou, C., Yang, H., Zhou, J., Tang, J.: Understanding negative sampling in graph representation learning. In: KDD ’20: The 26th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 1666–1676. ACM (2020)

    Google Scholar 

  30. Zhang, Y., Yao, Q., Shao, Y., Chen, L.: Nscaching: Simple and efficient negative sampling for knowledge graph embedding. In: 35th IEEE International Conference on Data Engineering, ICDE, pp. 614–625 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hubert, N., Monnin, P., Brun, A., Monticolo, D. (2022). New Strategies for Learning Knowledge Graph Embeddings: The Recommendation Case. In: Corcho, O., Hollink, L., Kutz, O., Troquard, N., Ekaputra, F.J. (eds) Knowledge Engineering and Knowledge Management. EKAW 2022. Lecture Notes in Computer Science(), vol 13514. Springer, Cham. https://doi.org/10.1007/978-3-031-17105-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17105-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17104-8

  • Online ISBN: 978-3-031-17105-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics