Skip to main content

Traffic Estimation and MPC-Based Traffic Light System Control in Realistic Real-Time Traffic Environments

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (VEHITS 2021, SMARTGREENS 2021)

Abstract

Modern traffic control systems are key to cope with current and future traffic challenges. In this paper information obtained from a microscopic traffic estimation using various data sources is used to feed a new developed traffic control approach. The presented method can control a traffic area with multiple traffic light systems (TLS) reacting to individual road users and pedestrians. In contrast to widespread green time extension techniques, this control selects the best phase sequence by analyzing the current traffic state reconstructed in SUMO and its predicted progress. To achieve this, the key aspect of the control strategy is to use Model Predictive Control (MPC). In order to maintain realism for real world applications, among other things, the traffic phase transitions are modelled in detail and integrated within the prediction. For the efficiency, the approach incorporates a fuzzy logic preselection of all phases reducing the computational effort. The evaluation itself is able to be easily adjusted to focus on various objectives like low occupancies, reducing waiting times and emissions, few number of phase transitions etc. determining the best switching times for the selected phases. Exemplary traffic simulations demonstrate the functionality of the MPC-based control and, in addition, some aspects under development like the real-world communication network are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Depending on the used sensor technology, the pedestrian count can be a binary value (push buttons) or a measured number (e.g., radar sensors). The waiting times are applied and calculated respectively.

  2. 2.

    LISA is a comprehensive proprietary software package for traffic engineering, testing control systems and for supplying ECU.

  3. 3.

    The traffic consists of eight different vehicle types (passenger, delivery, bicycle, bus, trailer, semi-trailer, truck and motorcycle).

References

  1. Henning, S., Biemelt, P., Rüddenklau, N., Gausemeier, S., Trächtler, A.: A simulation framework for testing a conceptual hierarchical autonomous traffic management system including an intelligent external traffic simulation. In: Driving Simulation Association (ed.) Proceedings of the DSC 2018 Europe VR. Driving Simulation & Virtual Reality Conference & Exhibition. New Trends in Human in the Loop Simulation and Testing, Palais des Congrès, Antibes, France, 05–07 September 2018, pp. 91–98. Driving Simulation Association (2018)

    Google Scholar 

  2. Mertin, S., Malena, K., Link, C., Gausemeier, S., Trächtler, A.: Macroscopic traffic flow control using consensus algorithms. In: The 23rd IEEE International Conference on Intelligent Transportation Systems. International Conference on Intelligent Transportation Systems (ITSC) (2020). https://www.ieee-itsc2020.org

  3. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: 2018 IEEE Intelligent Transportation Systems Conference, Maui, Hawaii, 4–7 November 2018. 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, 11 Apr 2018–11 July 2018, Piscataway, NJ, pp. 2575–2582. IEEE (2018). https://doi.org/10.1109/ITSC.2018.8569938

  4. Malena, K., Link, C., Mertin, S., Gausemeier, S., Trächtler, A.: Online state estimation for microscopic traffic simulations using multiple data sources. In: 7th International Conference on Vehicle Technology and Intelligent Transport Systems, pp. 386–395 (2021)

    Google Scholar 

  5. Osorio, C.: Dynamic origin-destination matrix calibration for large-scale network simulators. Transp. Res. Part C Emerging Technol. 98, 186–206 (2019). https://doi.org/10.1016/j.trc.2018.09.023

    Article  Google Scholar 

  6. Osorio, C.: High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks. Transp. Res. Part B Methodol. 124, 18–43 (2019). https://doi.org/10.1016/j.trb.2019.01.005

    Article  Google Scholar 

  7. Antoniou, C., Ben-Akiva, M., Koutsopoulos, H.N.: Kalman filter applications for traffic management. In: Kordic, V. (ed.) Kalman Filter. InTech (2010)

    Google Scholar 

  8. Adewoye, O.O., Ajibade, S.M., Akin-Olayemi, T.: Modelling of a fuzzy traffic light controller. Int. J. Res. Mech. Mater. Eng. 1, 6–14 (2015)

    Google Scholar 

  9. Ge, Y.: A two-stage fuzzy logic control method of traffic signal based on traffic urgency degree. Modell. Simul. Eng. (3), 1–6 (2014). https://doi.org/10.1155/2014/694185

  10. Collotta, M., Lo Bello, L., Pau, G.: A novel approach for dynamic traffic lights management based on Wireless Sensor Networks and multiple fuzzy logic controllers. Expert Syst. Appl. 42(13), 5403–5415 (2015). https://doi.org/10.1016/j.eswa.2015.02.011

    Article  Google Scholar 

  11. Zheng, G., et al.: Diagnosing reinforcement learning for traffic signal control. http://arxiv.org/pdf/1905.04716v1 (2019)

  12. Wei, H., Zheng, G., Yao, H., Li, Z.: IntelliLight: a reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp. 2496–2505. Association for Computing Machinery (2018)

    Google Scholar 

  13. Higuera, C., Lozano, F., Camacho, E.C., Higuera, C.H.: Multiagent reinforcement learning applied to traffic light signal control. In: Demazeau, Y., Matson, E., Corchado, J.M., De la Prieta, F. (eds.) PAAMS 2019. LNCS (LNAI), vol. 11523, pp. 115–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24209-1_10

    Chapter  Google Scholar 

  14. Tettamanti, T., Varga, I., Kulcsar, B., Bokor, J.: Model predictive control in urban traffic network management. In: 16th Mediterranean Conference on Control and Automation, pp. 1538–1543 (2008)

    Google Scholar 

  15. Wang, Y., Wang, D., Xu, B., Wongpiromsarn, T.: Junction-based model predictive control for urban traffic light control. In: 2013 International Conference on Connected Vehicles and Expo (ICCVE), Las Vegas, NV, USA, pp. 54–59. IEEE (2013). https://doi.org/10.1109/ICCVE.2013.6799769

  16. Kamal, M.A.S., Imura, J.-I., Hayakawa, T., Ohata, A., Aihara, K.: Traffic signal control of a road network using MILP in the MPC framework. Int. J. Intell. Transp. Syst. Res. 13(2), 107–118 (2014). https://doi.org/10.1007/s13177-014-0090-3

    Article  Google Scholar 

  17. Haddad, J., Mahalel, D., Ioslovich, I., Gutman, P.-O.: Constrained optimal steady-state control for isolated traffic intersections. Control Theory Technol. 12(1), 84–94 (2014). https://doi.org/10.1007/s11768-014-2247-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, S., Wong, S.C., Varaiya, P.: Group-based hierarchical adaptive traffic-signal control part I: formulation. Transp. Res. Part B Methodol. 105, 1–18 (2017). https://doi.org/10.1016/j.trb.2017.08.008

    Article  Google Scholar 

  19. Mohajerpoor, R., Saberi, M., Ramezani, M.: Analytical derivation of the optimal traffic signal timing: minimizing delay variability and spillback probability for undersaturated intersections. Transp. Res. Part B Methodol. 119, 45–68 (2019). https://doi.org/10.1016/j.trb.2018.11.004

    Article  Google Scholar 

  20. Malena, K., Link, C., Mertin, S., Gausemeier, S., Trächtler, A.: Validation of an online state estimation concept for microscopic traffic simulations. In: IEEE Transportation Electrification Conference and Expo (2021)

    Google Scholar 

  21. Bierlaire, M., Crittin, F.: An efficient algorithm for real-time estimation and prediction of dynamic OD tables. Oper. Res. 52(1), 116–127 (2004). https://doi.org/10.1287/opre.1030.0071

    Article  Google Scholar 

  22. Bundesministerium für Verkehr, Bau und Stadtentwicklung: Technische Lieferbedingungen für Streckenstationen. Bundesministerium für Verkehr, Bau und Stadtentwicklung, Berlin (2012)

    Google Scholar 

  23. Produktprospekt TOPO. Fahrzeug-klassifizierungssysteme, Deutschland, Bad Lippspringe (2019)

    Google Scholar 

  24. Forschungsgesellschaft für Straßen- und Verkehrswesen: Richtlinien für Lichtsignalanlagen. RiLSA: Lichtzeichenanlagen für den Straßenverkehr. FGSV R1 - Regelwerke, FGSV-321, Köln (2015)

    Google Scholar 

  25. Urbanik, T., et al.: Signal Timing Manual -, 2nd edn. Transportation Research Board, Washington, D.C. (2015)

    Book  Google Scholar 

  26. Schulz, G., Graf, C.: Regelungstechnik 2. Mehrgrößenregelung, Digitale Regelungstechnik, Fuzzy-Regelung, 3rd edn. De Gruyter, München (2013)

    Google Scholar 

  27. Land NRW: Karte Schloß Neuhaus. Datenlizenz Deutschland -Namensnennung -Version 2.0 (2019). www.govdata.de/dl-de/by-2-0

  28. Bottazzi, M., Tcheumadjeu, L.C.T., Trumpold, J., Erdmann, J., Oertel, R.: LiSuM: design and development of a middleware to couple virtual LISA+ TLS controller and SUMO simulation. In: Proceedings of the SUMO 2017, vol. 31, pp. 179–192 (2017)

    Google Scholar 

  29. Liu, G.P.: Predictive controller design of networked systems with communication delays and data loss. IEEE Trans. Circuits Syst. II 57(6), 481–485 (2010). https://doi.org/10.1109/TCSII.2010.2048377

    Article  Google Scholar 

  30. Hirano, H., Mukai, M., Azuma, T., Fujita, M.: Optimal control of discrete-time linear systems with network-induced varying delay. In: Proceedings of the 2005 American Control Conference, ACC, Hilton Portland & Executive Tower. Portland, OR, USA, 8–10 June 2005, pp. 1419–1424. IEEE Service Center, Piscataway (2005). https://doi.org/10.1109/ACC.2005.1470164

Download references

Acknowledgment

The research is funded by the Ministry of Economy, Innovation, Digitalization and Energy of North Rhine-Westphalia, Germany. The authors would like to thank all partners of the Pilot Project Schlosskreuzung for their support and the provided data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Malena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malena, K., Link, C., Bußemas, L., Gausemeier, S., Trächtler, A. (2022). Traffic Estimation and MPC-Based Traffic Light System Control in Realistic Real-Time Traffic Environments. In: Klein, C., Jarke, M., Helfert, M., Berns, K., Gusikhin, O. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. VEHITS SMARTGREENS 2021 2021. Communications in Computer and Information Science, vol 1612. Springer, Cham. https://doi.org/10.1007/978-3-031-17098-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17098-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17097-3

  • Online ISBN: 978-3-031-17098-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics