Skip to main content

Numerical Simulation of the Interaction of a Shock Wave with a Permeable Granulated Layer

  • Chapter
  • First Online:
Behavior of Materials under Impact, Explosion, High Pressures and Dynamic Strain Rates

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 176))

Abstract

Solutions to the problems of the action of plane shock waves on a deformable granular layer are obtained. The transformation of waves when passing through an elastoplastic granular layer with and without taking into account the change in the permeability of the layer due to its deformation is investigated. When solving problems, the dependence of the change in the permeability of a layer on its compression is used, which was obtained numerically when modeling the compression of symmetric fragments of granular layers in a spatial setting. A mathematical model is presented that describes in a one-dimensional approximation the interrelated processes of unsteady deformation of flat permeable granular layers, consisting of spherical particles, and wave processes in gas. The model is based on nonlinear equations of the dynamics of two interpenetrating continua. As the interphase forces, the drag forces are taken into account when the gas flows around the spherical particles and the Stokes friction forces. The numerical solution of the equations is carried out according to the modified scheme of S. K. Godunov, adapted to the problems of dynamics of interpenetrating media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SW :

Shock wave

References

  1. Gelfand BE, Silnikov MV (2002) St. Petersburg Izdatelstvo Poligon, 272 p

    Google Scholar 

  2. Gelfand BE, Gubanov AV, Timofeev EI (1983) Academy of sciences of the USSR. MZHG. 4:79–84

    Google Scholar 

  3. Ben-Dor G, Britan A, Elperin T, Igra O, Jiang JP (1997) Exp Fluids 22:507–518

    Article  Google Scholar 

  4. Glam B, Igra O, Britan A, Ben-Dor G (2007) Part I, experimental investigation. Shock Waves 17(1):1–14

    Article  Google Scholar 

  5. Ben-Dor G, Britan A, Elperin T, Igra O, Jiang JP (1997) Exp Fluids 22(5):432–443

    Article  Google Scholar 

  6. Britan A, Ben-Dor G (2006) Int J Multiph Flow 32(5):623–642

    Article  Google Scholar 

  7. Britan A, Ben-Dor G, Igra O, Shapiro H (2006) J Appl Phys 99(9). https://doi.org/10.1063/1.2197028

  8. Britan A, Elperin T, Igra O, Jiang JP (1997) AIP Conf Proc 370(1):971–974

    Google Scholar 

  9. Levy A, Ben-Dor G, Sorek S (1996) J Fluid Mech 324:163–179

    Article  Google Scholar 

  10. Britan A, Ben-Dor G, Elperin T, Igra O, Jiang JP (1997) Int J Multiph Flow 23(3):473–491

    Article  Google Scholar 

  11. Sadd MH, Shukla A, Mei H, Zhu CY (1989) Micromechanics and Inhomogeneity, 367–383

    Google Scholar 

  12. Britan A, Ben-Dor G, Igra O, Shapiro H (2001) Int J Multiph Flow 27(4):617–634

    Article  Google Scholar 

  13. Altshuler LV, Kruglikov BS (1984) J Appl Mech Tech Phys 5:24–29

    Google Scholar 

  14. Gubaidullin AA, Dudko DN, Urmancheev SF (2000) Journal of combustion. Explosion Shock Waves 36(4):87–96

    Google Scholar 

  15. Boldyreva OYu, Gubaidullin AA, Dudko DN, Kutushev AG (2007) Physics of combustion and explosion 43(1):132–142

    Google Scholar 

  16. Kochetkov AV, Leontev NV, Modin IA, Savikhin AO (2018). Study of the stress-strain and strength properties of the metal woven grids. Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika. 52:53–62. https://doi.org/10.17223/19988621/52/6

  17. Modin IA, Kochetkov AV, Leontiev NV (2019). Numerical simulation of quasistatic and dynamic compression of a granular layer. AIP conference proceedings. 2116(270003). https://doi.org/10.1063/1.5114277

  18. Yaushev IK (1967) Izv SB USSR Acad Sci 2:109–120

    Google Scholar 

  19. Kraiko AN, Miller LG, Shirkovsky IA (1982) J Appl Mech Tech Phys 1:111–118

    Google Scholar 

  20. Dulov VG, Lukyanov GA (1984) Novosibirsk: Nauka, 234 p

    Google Scholar 

  21. Godunov SK (1976) Chislennoye resheniye mnogomernykh zadach gazovoy dinamiki (Numerical solution of multidimensional problems of gas dynamics). M.: Science, 400 p

    Google Scholar 

  22. Nicholas O (1981) Tensile testing of materials at high rates of strain. Exp Mech 21(5):177–195

    Article  Google Scholar 

  23. Bragov AM, Lomunov AK, Medvedev AA (1991) A modified Kolsky method for the investigation of the strain-rate history dependence of mechanical properties of materials. J. Physique 4(1):471–475

    Google Scholar 

  24. Bragov AM, Zhegalov DV, Konstantinov AYu, Kochetkov AV, Modin IA, Savikhin AO (2016) Experimental study of deformation properties of a package of woven metal mesh under dynamic and quasi-static stressing. PNRPU Mech Bull 3:252–262. https://doi.org/10.15593/perm.mech/2016.3.17

  25. Balandin VV, Kochetkov AV, Krylov SV, Modin IA (2019) Numerical and experimental study of the penetration of a package of woven metal grid by a steel ball. J Phys Conf Ser. 1214(012004). https://doi.org/10.1088/1742-6596/1214/1/012004

  26. Igumnov LA, Kazakov DA, Shishulin DN, Modin IA, Zhegalov DV (2021) Experimental studies of high-temperature creep of titanium alloy VT6 under conditions of a complex stress state under the influence of an aggressive medium. Vestn Samar Gos Tekhn Univ Ser Fiz-Mat Nauki 25(2):286–302. https://doi.org/10.14498/vsgtu1850

  27. Telegin SV, Kirillova NI, Modin IA, Suleimanov EV (2021) Effect of particle size distribution on functional properties of Ce0.9Y0.1O2-d ceramics. Ceramics Int 47(12):17316–17321. https://doi.org/10.1016/j.ceramint.2021.03.043

  28. Bragov AM, Konstantinov AU, Kochetkov AV, Modin IA, Savikhin AO (2017) PNRPU Mech Bull 4:16–27. https://doi.org/10.15593/perm.mech/2017.4.02

  29. Kochetkov AV, Modin IA, Poverennov EY (2021) Numerical study of elastoplastic dynamic compression of metal braided grid. AIP conference proceedings. 2371(050005). https://doi.org/10.1063/5.0060905

  30. Bazhenova TV, Gvozdeva LG (1977) Nestatsionarnyye vzaimodeystviya udarnykh voln (Unsteady interactions of shock waves). M: Science, 204 p

    Google Scholar 

  31. Igumnov LA, Volkov IA, Kazakov DA, Shishulin DN, Modin IA (2021) Numerical simulation of the creep process of titanium alloy VT6 under a multi-axis stress state taking into account the influence of an aggressive environment. Vestnik samarskogo gosudarstvennogo tekhnicheskogo universiteta-seriya-fiziko-matematicheskiye nauki 25(3):435–456. https://doi.org/10.14498/vsgtu1873

  32. Bragov AM, Gonov ME, Lamzin DA, Lomunov AK, Modin IA (2021) Response of fine-grained fiber-reinforced concretes under dynamic compression. Mater Phys Mech 47(6):962–967. https://doi.org/10.18149/MPM.4762021_14

  33. Kochetkov AV, Modin IA, Glazova E.G. (2022) Numerical simulation of the interaction of a shock wave with a permeable deformable granulated layer. J Samara State Tech Univ Ser Phys Math Sci 26(1):2–15. https://doi.org/10.14498/vsgtu1879

  34. Balandin VV, Kochetkov AV, Krylov SV, Modin IA (2020) Experimental studies of the deformation properties of frozen soils under static and dynamic loads. J Phys Conf Ser 1459(012004). https://doi.org/10.1088/1742-6596/1459/1/012004

  35. Modin IA, Kochetkov AV, Poverennov EY (2022) Numerical and experimental study nonlinear compression packages of metal meshs. Problems Strength Plasticitythis Link Disabled 84(2):236–246. https://doi.org/10.32326/1814-9146-2022-84-2-236-246

Download references

Acknowledgements

The research was carried out at the expense of the grant of the Russian Science Foundation â„– 20-79-00108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan A. Modin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kochetkov, A.V., Modin, I.A. (2023). Numerical Simulation of the Interaction of a Shock Wave with a Permeable Granulated Layer. In: Orlov, M.Y., Visakh P. M. (eds) Behavior of Materials under Impact, Explosion, High Pressures and Dynamic Strain Rates. Advanced Structured Materials, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-031-17073-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17073-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17072-0

  • Online ISBN: 978-3-031-17073-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics