Skip to main content

A Light-Weight Interpretable Model for Nuclei Detection and Weakly-Supervised Segmentation

  • Conference paper
  • First Online:
Medical Optical Imaging and Virtual Microscopy Image Analysis (MOVI 2022)

Abstract

The field of computational pathology has witnessed great advancements since deep neural networks have been widely applied. These networks usually require large numbers of annotated data to train vast parameters. However, it takes significant effort to annotate a large histo-pathology dataset. We introduce a light-weight and interpretable model for nuclei detection and weakly-supervised segmentation. It only requires annotations on isolated nucleus, rather than on all nuclei in the dataset. Besides, it is a generative compositional model that first locates parts of nucleus, then learns the spatial correlation of the parts to further locate the nucleus. This process brings interpretability in its prediction. Empirical results on an in-house dataset show that in detection, the proposed method achieved comparable or better performance than its deep network counterparts, especially when the annotated data is limited. It also outperforms popular weakly-supervised segmentation methods. The proposed method could be an alternative solution for the data-hungry problem of deep learning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alom, M.Z., Yakopcic, C., Taha, T.M., Asari, V.K.: Microscopic nuclei classification, segmentation and detection with improved Deep Convolutional Neural Network (DCNN) approaches (2018)

    Google Scholar 

  2. Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_43

    Chapter  Google Scholar 

  3. Baykal, E., Dogan, H., Ercin, M.E., Ersoz, S., Ekinci, M.: Modern convolutional object detectors for nuclei detection on pleural effusion cytology images. Multimed. Tools App. 79(21-22), 15417–15436 (2020). https://doi.org/10.1007/s11042-019-7461-3

  4. Du, J., Li, X., Li, Q.: Detection and classification of cervical exfoliated cells based on faster R-CNN. In: 2019 IEEE 11th International Conference on Advanced Infocomm Technology, ICAIT 2019 (2019). https://doi.org/10.1109/ICAIT.2019.8935931

  5. Graham, S., et al.: Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Article  Google Scholar 

  6. Guo, R., Pagnucco, M., Song, Y.: Learning with noise: mask-guided attention model for weakly supervised nuclei segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 461–470. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_43

    Chapter  Google Scholar 

  7. Hagos, Y.B., Narayanan, P.L., Akarca, A.U., Marafioti, T., Yuan, Y.: ConCORDe-Net: cell count regularized convolutional neural network for cell detection in multiplex immunohistochemistry images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 667–675. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_74

    Chapter  Google Scholar 

  8. Höfener, H., Homeyer, A., Weiss, N., Molin, J., Lundström, C.F., Hahn, H.K.: Deep learning nuclei detection: a simple approach can deliver state-of-the-art results. Computerized Medical Imaging and Graphics 70, 43–52 (2018). https://www.sciencedirect.com/science/article/pii/S0895611118300806

  9. Hsu, C.C., Hsu, K.J., Tsai, C.C., Lin, Y.Y., Chuang, Y.Y.: Weakly supervised instance segmentation using the bounding box tightness prior. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  10. Kashif, M.N., Raza, S.E., Sirinukunwattana, K., Arif, M., Rajpoot, N.: Handcrafted features with convolutional neural networks for detection of tumor cells in histology images. In: Proceedings - International Symposium on Biomedical Imaging. vol. 2016-June (2016)

    Google Scholar 

  11. Kortylewski, A., Liu, Q., Wang, A., Sun, Y., Yuille, A.: Compositional convolutional neural networks: a robust and interpretable model for object recognition under occlusion. Int. J. Comput. Vis. 129(3), 736–760 (2021)

    Article  Google Scholar 

  12. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  13. Kuse, M., Wang, Y.F., Kalasannavar, V., Khan, M., Rajpoot, N.: Local isotropic phase symmetry measure for detection of beta cells and lymphocytes. J. Pathol. Inform. 2, 2 (2011)

    Article  Google Scholar 

  14. Lee, H., Jeong, W.-K.: Scribble2Label: scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 14–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_2

    Chapter  Google Scholar 

  15. Lu, S., et al.: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis. JAMA Oncol. 5(8), 1195–1204 (2019)

    Article  Google Scholar 

  16. Naylor, P., Lae, M., Reyal, F., Walter, T.: Nuclei segmentation in histopathology images using deep neural networks. In: Proceedings - International Symposium on Biomedical Imaging (2017)

    Google Scholar 

  17. Qu, H., et al.: Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images. IEEE Trans. Med. Imaging 39(11), 3655–3666 (2020)

    Article  Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  19. Ren, Z., Yuan, J., Li, C., Liu, W.: Minimum near-convex decomposition for robust shape representation. In: Proceedings of the IEEE International Conference on Computer Vision (2011)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Sirinukunwattana, K., Ahmed Raza, S.E., Tsang, Y.-W., Snead, D., Cree, I., Rajpoot, N.: A spatially constrained deep learning framework for detection of epithelial tumor nuclei in cancer histology images. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds.) Patch-MI 2015. LNCS, vol. 9467, pp. 154–162. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28194-0_19

    Chapter  Google Scholar 

  22. Sirinukunwattana, K., Raza, S.E., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196–1206 (2016)

    Article  Google Scholar 

  23. Tofighi, M., Guo, T., Vanamala, J.K., Monga, V.: Deep networks with shape priors for nucleus detection. In: Proceedings - International Conference on Image Processing, ICIP (2018)

    Google Scholar 

  24. Veta, M., Van Diest, P.J., Kornegoor, R., Huisman, A., Viergever, M.A., Pluim, J.P.: Automatic nuclei segmentation in h &e stained breast cancer histopathology images. PloS ONE 8(7), e70221 (2013)

    Article  Google Scholar 

  25. Wang, A., Sun, Y., Kortylewski, A., Yuille, A.: Robust object detection under occlusion with context-aware compositionalNets. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  26. Xie, Y., Xing, F., Kong, X., Su, H., Yang, L.: Beyond classification: structured regression for robust cell detection using convolutional neural network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 358–365. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_43

    Chapter  Google Scholar 

  27. Xie, Y., Xing, F., Shi, X., Kong, X., Su, H., Yang, L.: Efficient and robust cell detection: a structured regression approach. Med. Image Anal. 44, 245–254 (2018)

    Article  Google Scholar 

  28. Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixiao Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 384 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2022). A Light-Weight Interpretable Model for Nuclei Detection and Weakly-Supervised Segmentation. In: Huo, Y., Millis, B.A., Zhou, Y., Wang, X., Harrison, A.P., Xu, Z. (eds) Medical Optical Imaging and Virtual Microscopy Image Analysis. MOVI 2022. Lecture Notes in Computer Science, vol 13578. Springer, Cham. https://doi.org/10.1007/978-3-031-16961-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16961-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16960-1

  • Online ISBN: 978-3-031-16961-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics