Skip to main content

Reference Architectures for Telecommunications Systems

  • Chapter
  • First Online:
Reference Architectures for Critical Domains

Abstract

The evolution of communications systems has improved with the aggregation of mobility concepts, high data rates enabled by advances in radiofrequency technology, and new services enabled by enhanced computational power on end-user devices. In recent decades, wireless communication utilization has reached low-latency systems such as self-driving cars, remote surgery, online gaming, entertainment, massive machine communication such as sensor networks and the Internet of Things (IoT), and other applications requiring mobility and high performance. Moreover, the telecommunications industry faces significant business and technology challenges due to increased demands for new services, incorporation of new paradigms, and the technical challenges associated with implementing market demands and complying with regulatory standards. In this regard, reference architectures have been proposed for the development of such systems as a common approach for generalizing knowledge and standardizing integration, deployment, and operation between the leading players and associated stakeholders. This chapter presents examples of these architectures focusing on 5G, digital TV, and future scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.U. Campos Delgado, C.A. Gutierrez, O. Caicedo, 5G and beyond: Past, present and future of the Mobile communications. IEEE Lat. Am. Trans. 19(10), 1702–1736 (2021)

    Article  Google Scholar 

  2. S. Zhang, An overview of network slicing for 5G. IEEE Wirel. Commun. 26(3), 111–117 (June 2019). https://doi.org/10.1109/MWC.2019.1800234

    Article  Google Scholar 

  3. 3GPP TR 21.915 version 15.0.0 Release 15, Technical Report

    Google Scholar 

  4. NR; NR and NG-RAN Overall description; Stage-2. Technical Specification

    Google Scholar 

  5. Introduction to 5G Core Service-Based Architecture (SBA) Components. https://5g.security/5g-technology/5g-core-sba-components-architecture/ Accessed 10 December 2021

  6. Edge Computing for 5G Networks. 5G PPP Technology Board. https://doi.org/10.5281/zenodo.3698117

  7. MEC in 5G Networks. ETSI White Paper No. 28. First edition – June 2018

    Google Scholar 

  8. Video streaming market growth trends. https://www.grandviewresearch.com/press-release/global-video-streaming-market. Accessed 10 April 2021

  9. C. Lai, R. Hwang, H. Chao, M.M. Hassan, A. Alamri, A buffer-aware HTTP live streaming approach for SDN-enabled 5G wireless networks. IEEE Network 29(1), 49–55 (Jan.–Feb. 2015). https://doi.org/10.1109/MNET.2015.7018203

    Article  Google Scholar 

  10. L. Fanari, E. Iradier, J. Montalban, P. Angueira, S.-I. Park, N. Hur, S.-Y. Kwon, Trends and challenges in broadcast and broadband convergence, in 2019 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech), (IEEE, St. Petersburg, 2019), pp. 153–156

    Chapter  Google Scholar 

  11. Youtube for press – Youtube in numbers. https://www.youtube.com/intl/en-GB/about/press/. Accessed 10 June 2021

  12. J.-y. Lee, S.-I. Park, H.-J. Yim, B.-M. Lim, S. Kwon, S. Ahn, N. Hur, Ip-based cooperative services using atsc 3.0 broadcast and broadband. IEEE Trans Broadcast 66(2), 440–448 (2020)

    Article  Google Scholar 

  13. S. Khalaf. Consumers time-spent on mobile crosses 5 hours a day. flurrymobile.tumblr.com/post/157921590345/us-consumers-time-spent-on-mobilecrosses-5, 2017. Flurry Analytics Blog

  14. G. Bichot, G. Deen, D. Lucas, B. Stevenson, A. C. Begen, Y. Gressel, The viability of multicast ABR in future streaming architectures. https://streamingvideoalliance.docsend.com/view/kzg6cekcrosses-5, 2019. Streaming Video Alliance, Fremont, CA, USA

  15. 23001-6 Dynamic Adaptive Streaming over HTTP (DASH), MPEG-4 Systems, ISO International Organisation for Standardization

    Google Scholar 

  16. I. Sodagar, The mpeg-dash standard for multimedia streaming over the internet. IEEE MultiMedia 18(4), 62–67 (October 2011)

    Article  Google Scholar 

  17. P.K. Yadav, A. Bentaleb, M. Lim, J. Huang, W.T. Ooi, R. Zimmermann, Playing chunk-transferred DASH segments at low latency with QLive, in Proceedings of the 12th ACM Multimedia Systems Conference (MMSys’ 21). Association for Computing Machinery, (ACM, New York, NY, 2021), pp. 51–64. https://doi.org/10.1145/3458305.3463376

    Chapter  Google Scholar 

  18. Rdk-V architecture. https://wiki.rdkcentral.com/display/RDK/RDK-V+Architecture. Accessed 11 June 2021

  19. C. Koch, S. Hacker, D. Hausheer, Vodcast: Efficient sdn-based multicast for video on demand, in 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), (IEEE, Macau, 2017), pp. 1–6

    Google Scholar 

  20. I. Eizmendi, M. Velez, D. Gomez-Barquero, J. Morgade, V. Baena-Lecuyer, M. Slimani, J. Zoellner, Dvb-t2: The second generation of terrestrial digital video broadcasting system. IEEE Trans. Broadcast. 60(2), 258–271 (2014)

    Article  Google Scholar 

  21. M.K. Park, Y. Kim, An overhead comparison of MMT and MPEG-2 TS in broadcast services. J Broadcast Eng 21, 436–449 (2016 May)

    Article  Google Scholar 

  22. S. Afzal, V. Testoni, J.F.F. de Oliveira, C.E. Rothenberg, P. Kolan, I. Bouazizif, A novel scheduling strategy for MMT-based multipath video streaming, in 2018 IEEE Global Communications Conference (GLOBECOM), (IEEE, Abu Dhabi, 2018), pp. 206–212

    Chapter  Google Scholar 

  23. B. Furht, S. Ahson, T. Stockhammer, A. Shokrollahi, M. Watson, M. Luby, T. Gasiba, Application layer forward error correction for mobile multimedia broadcasting, in Handbook of Mobile Broadcasting: DVB-H, DMB, ISDB-T, and MEDIAFLO, (CRC Press, Boca Raton, 2008, April)

    Chapter  Google Scholar 

  24. R. Sotelo, J. Joskowicz, N. Rondan, An integrated broadcast-broadband system that merges isdb-t with hbbtv 2.0. IEEE Trans. Broadcast. 64(3), 709–720 (2018)

    Article  Google Scholar 

  25. N. Barman, M.G. Martini, Qoe modeling for http adaptive video streaming: A survey and open challenges. IEEE Access 7, 30831–30859 (2019)

    Article  Google Scholar 

  26. A. Mehrabi, M. Siekkinen, A. Yl-Jaaski, Qoe-traffic optimization through collaborative edge caching in adaptive mobile video streaming. IEEE Access 6, 52261–52276 (2018)

    Article  Google Scholar 

  27. J.V.M. Cardoso, A.C.S. Mariano, C.D.M. Regis, M.S. Alencar, Comparison of objective video quality metrics based on structural similarity and error sensitivity. Revista de Tecnologia da Informação e Comunicação 1(2), 33–40 (2012, April)

    Article  Google Scholar 

  28. Rdk documentation. https://wiki.rdkcentral.com/display/RDK/RDK+Documentation. Accessed 11 June 2021

  29. Android Platforms in Television - Mapping Out a Strategy, Susan Crouse, 2016, Alticast, https://www.digitaltveurope.com/files/2016/01/AndroidWhitePaperDec2015final1.pdf

  30. The android TV input framework. https://source.android.com/devices/tv. Accessed 19 June 2021

  31. N. Vo, T.Q. Duong, H.D. Tuan, A. Kortun, Optimal video streaming in dense 5G networks with D2D communications. IEEE Access 6, 209–223 (2018). https://doi.org/10.1109/ACCESS.2017.2761978

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmar Candeia Gurjão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurjão, E.C., de Oliveira, J.F.F., Antonino, P.O. (2023). Reference Architectures for Telecommunications Systems. In: Nakagawa, E.Y., Oliveira Antonino, P. (eds) Reference Architectures for Critical Domains . Springer, Cham. https://doi.org/10.1007/978-3-031-16957-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16957-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16956-4

  • Online ISBN: 978-3-031-16957-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics