Skip to main content

On the Effect of Clock Frequency on Voltage and Electromagnetic Fault Injection

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13285))

Included in the following conference series:

  • 1209 Accesses

Abstract

We investigate the influence of clock frequency on the success rate of a fault injection attack. In particular, we examine the success rate of voltage and electromagnetic fault attacks for varying clock frequencies. Using three different tests that cover different components of a System-on-Chip, we perform fault injection while its CPU operates at different clock frequencies. Our results show that the attack’s success rate increases with an increase in clock frequency for both voltage and EM fault injection attacks. As the technology advances push the clock frequency further, these results can help assess the impact of fault injection attacks more accurately and develop appropriate countermeasures to address them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997. LNCS, vol. 1361, pp. 125–136. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028165

    Chapter  Google Scholar 

  2. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_20

    Chapter  Google Scholar 

  3. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characterization of the effects of clock glitches on 8-bit MCUs. In: 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 105–114. IEEE (2011)

    Google Scholar 

  4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

    Article  Google Scholar 

  5. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)

    Article  Google Scholar 

  6. Bayon, P., et al.: Contactless electromagnetic active attack on ring oscillator based true random number generator. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 151–166. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_12

    Chapter  Google Scholar 

  7. Bayon, P., et al.: Contactless electromagnetic active attack on ring oscillator based true random number generator. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 151–166. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_12

    Chapter  Google Scholar 

  8. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_4

    Chapter  Google Scholar 

  10. Bozzato, C., Focardi, R., Palmarini, F.: Shaping the glitch: Optimizing voltage fault injection attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 199–224 (2019)

    Article  Google Scholar 

  11. Cui, A., Housley, R.: BADFET: defeating modern secure boot using second-order pulsed electromagnetic fault injection. In: 11th \(\text{USENIX}\) Workshop on Offensive Technologies (\(\text{ WOOT }\) 17) (2017)

    Google Scholar 

  12. Dehbaoui, A., Dutertre, J.-M., Robisson, B., Tria, A.: Electromagnetic transient faults injection on a hardware and a software implementations of AES. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 7–15. IEEE (2012)

    Google Scholar 

  13. Dumont, M., Lisart, M., Maurine, P.: Electromagnetic fault injection : How faults occur. In: 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 9–16 (2019). https://doi.org/10.1109/FDTC.2019.00010

  14. Elmohr, M.A., Liao, H., Gebotys, C.H.: EM fault injection on ARM and RISC-V. In: 2020 21st International Symposium on Quality Electronic Design (ISQED), pp. 206–212 (2020). https://doi.org/10.1109/ISQED48828.2020.9137051

  15. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005). https://doi.org/10.1007/11506447_4

    Chapter  Google Scholar 

  16. Liao, H., Gebotys, C.: Methodology for EM fault injection: charge-based fault model. In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 256–259 (2019). https://doi.org/10.23919/DATE.2019.8715150

  17. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88. IEEE (2013)

    Google Scholar 

  18. Ordas, S., Guillaume-Sage, L., Tobich, K., Dutertre, J.-M., Maurine, P.: Evidence of a larger EM-induced fault model. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 245–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3_15

    Chapter  Google Scholar 

  19. Riscure. Inspector fault injection (2020). https://getquote.riscure.com/en/inspector-fault-injection.html. Accessed 19 Aug 2022

  20. Riviere, L., Najm, Z., Rauzy, P., Danger, J.L., Bringer, J., Sauvage, L.: High precision fault injections on the instruction cache of ARMv7-M architectures. In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 62–67. IEEE (2015)

    Google Scholar 

  21. SiFive. FE310-G000 Datasheet (2017). https://sifive.cdn.prismic.io/sifive%2Ffeb6f967-ff96-418f-9af4-a7f3b7fd1dfc_fe310-g000-ds.pdf. Accessed 19 Aug 2022

  22. SiFive. FE310-G000 Manual (2019). https://static.dev.sifive.com/FE310-G000.pdf. Accessed 19 Aug 2022

  23. SiFive. HiFive1 Schematics (2016). https://sifive.cdn.prismic.io/sifive%2F080cdef9-4631-4c9b-b8f5-7937fbdec8a4_hifive1-a01-schematics.pdf. Accessed 19 Aug 2022

  24. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_2

    Chapter  Google Scholar 

  25. Timmers, N., Mune, C.: Escalating privileges in linux using voltage fault injection. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 1–8 (2017)

    Google Scholar 

  26. Timmers, N., Spruyt, A., Witteman, M.: Controlling pc on ARM using fault injection. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp. 25–35 (2016)

    Google Scholar 

  27. Vasselle, A., Thiebeauld, H., Maouhoub, Q., Morisset, A., Ermeneux, S.: Laser-induced fault injection on smartphone bypassing the secure boot. IEEE Trans. Comput. 69, 1449–1459 (2018)

    Article  Google Scholar 

  28. Zussa, L., Dutertre, J.-M., Clediere, J., Tria, A.: Power supply glitch induced faults on FPGA: an in-depth analysis of the injection mechanism. In: 2013 IEEE 19th International On-Line Testing Symposium (IOLTS), pp. 110–115. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos Koffas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koffas, S., Vadnala, P.K. (2022). On the Effect of Clock Frequency on Voltage and Electromagnetic Fault Injection. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2022. Lecture Notes in Computer Science, vol 13285. Springer, Cham. https://doi.org/10.1007/978-3-031-16815-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16815-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16814-7

  • Online ISBN: 978-3-031-16815-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics