Skip to main content

Bridging Reliability to Efficiency Consecutive Elegant and Simple Design

  • Conference paper
  • First Online:
Intelligent Methods Systems and Applications in Computing, Communications and Control (ICCCC 2022)

Abstract

An acute problem when moving into the few nanometers highly advanced CMOS technologies is represented by the inexorable cost-yield balance, lately clearly tilted by the hefty costs. Amongst the options worth investigating (for reducing costs), designing for (enhanced) reliability has still not gained traction, as implicitly considered a power-/energy-hungry solution (due to redundancy), as well as a complex design alternative (hence risky). From the biological side, neurons are prime examples of highly efficient designs reaching outstanding communication and computation reliabilities, although relying on random devices (known as ion channels or, more fittingly, single ion transistors). In this paper, bridging from biology to circuits, we will show how kind of overlooked mathematical results (about consecutive systems) together with novel Binet-equivalent formulas (for Fibonnaci numbers of higher orders) can be pieced together for completely avoiding reliability calculations for consecutive systems. Finally, using such results, in combination with freshly defined cost functions (for reliability), we are able to present a trivial design scheme for consecutive systems which is balancing reliability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babbage, C.: Babbage’s calculating engine. Edinb. Rev. 59(120), 263–327 (1834). https://en.wikisource.org/w/index.php?title=Edinburgh_Review/Volume_59/Babbage%27s_Calculating_Engine&oldid=5473361. Accessed 06 June 2022

  2. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Shannon, C.E., McCarthy, J. (eds.): Automata Studies, pp. 43–98. Princeton University Press, Princeton (1956). Lectures at Caltech, 4–15 January 1952. https://archive.org/details/vonNeumann_Prob_Logics_Rel_Org_Unrel_Comp_Caltech_1952/mode/2up. Accessed 06 June 2022

  3. European Commission: European Chips Act, Brussels, Belgium, 8 February 2022. https://ec.europa.eu/commission/presscorner/detail/en/ip_22_729. see also U. von der Leyend, 15 March 2022. https://twitter.com/vonderleyen/status/1503723837501935618. Accessed 06 June 2022

  4. Moore, E.F., Shannon, C.E.: Reliable circuits using less reliable relays – Part I. J. Franklin Inst. 262(3), 191–208 (1956). Preliminary version: Reliable circuits using crummy relays. Tech. Rep. Memo. 54-114-42. Bell Labs, Murray Hill, NJ, USA, 29 November 1954

    Google Scholar 

  5. Pierce, W.H.: Interwoven redundant logic. J. Frankl. Inst. 277(1), 55–85 (1964)

    Article  MathSciNet  Google Scholar 

  6. Deng, H., Chen, J., Li, Q., Li, R., Gao, Q.: On the construction of most reliable networks. Discrete Appl. Math. 140(1–3), 19–33 (2004)

    Article  MathSciNet  Google Scholar 

  7. Brown, J.I., Colbourn, C.J., Cox, D., Graves, C., Mol, L.: Network reliability: Heading out on the highway. Networks 77(1), 146–160 (2020)

    Article  MathSciNet  Google Scholar 

  8. Romero, P.: Uniformly optimally reliable graphs: A survey. Networks (2021). Art. 22085. https://doi.org/10.1002/net.22085. Accessed 06 June 2022

  9. Drăgoi, V.-F., Beiu, V.: Fast reliability ranking of matchstick minimal networks. Networks 79(4), 479–500 (2022)

    Article  MathSciNet  Google Scholar 

  10. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  11. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MathSciNet  Google Scholar 

  12. Kontoleon, J.M.: Reliability determination of a r-successive-out-of-n:F system. IEEE Trans. Reliab. R-29(5), 437 (1980)

    Google Scholar 

  13. Chiang, D.T., Niu, S.-C.: Reliability of consecutive-k-out-of n:F system. IEEE Trans. Reliab. R-30(1), 87–89 (1981)

    Google Scholar 

  14. Chao, M.T., Lin, G.D.: Economical design of large consecutive-k-out-of n:F systems. IEEE Trans. Reliab. R-32(5), 411–413 (1984)

    Google Scholar 

  15. Fu, J.C.: Reliability of a large consecutive-k-out-of n:F system. IEEE Trans. Reliab. R-34(2), 127–130 (1985)

    Google Scholar 

  16. Fu, J.C.: Bounds for reliability of large consecutive-k-out-of n:F systems with unequal component reliability. IEEE Trans. Reliab. R-35(3), 316–319 (1986)

    Google Scholar 

  17. Fu, J.C.: Reliability of consecutive-k-out-of n:F systems with (k−1)-step Markov dependence. IEEE Trans. Reliab. R-35(5), 602–606 (1986)

    Google Scholar 

  18. Fu, J.C., Hu, B.: On reliability of a large consecutive-k-out-of n:F systems with (k−1)-step Markov dependence. IEEE Trans. Reliab. R-36(1), 75–77 (1987)

    Google Scholar 

  19. Makri, F.S., Psillakis, Z.M.: On success runs of length exceeding a threshold. Methodol. Comput. Appl. Probab. 13(2), 269–305 (2011)

    Article  MathSciNet  Google Scholar 

  20. Beiu, V., Dăuş, L.: Review of reliability bounds for consecutive-k-out-of-n systems. In: Proceedings of the International Conference on Nanotechnology (IEEE-NANO), Toronto, Canada, pp. 302–307 (2014)

    Google Scholar 

  21. Beiu, V., Dăuş, L.: Deciphering the reliability scheme of the neurons – one ion channel at a time. In: Proceedings of the International Conference on Bio-Inspired ICT (BICT), Boston, MA, USA, pp. 182–187 (2014)

    Google Scholar 

  22. Beiu, V., Dăuş, L.: Reliability bounds for two dimensional consecutive systems. Nano Commun. Netw. 6(3), 145–152 (2015)

    Article  Google Scholar 

  23. de Moivre, A.: The Doctrine of Chances, 2nd edn. H. Woodfall, London (1738). https://archive.org/details/doctrineofchance00moiv. Accessed 06 June 2022. Links to the 3rd edn.

  24. Xu, K., Zhong, G., Zhuang, X.: Actin, spectrin and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118), 452–456 (2013)

    Article  Google Scholar 

  25. Lukinavičius, G., et al.: Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11(7), 731–733 (2014)

    Article  Google Scholar 

  26. Zhong, G., et al.: Developmental mechanism of the periodic membrane skeleton in axons. elife 3, e04581(1–21) (2014)

    Google Scholar 

  27. D’Este, E., Kamin, D., Göttfert, F., El-Hady, A., Hell, S.W.: STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10(8), 1246–1251 (2015)

    Article  Google Scholar 

  28. Kevenaar, J.T., Hoogenraad, C.C.: The axonal cytoskeleton: Fom organization to function. Front. Mol. Neurosci. 8, 44(1–12) (2015)

    Google Scholar 

  29. Stewart, E., Shen, K.: STORMing towards a clear picture of the cytoskeleton in neurons. eLife 4, e06235(1–3) (2015)

    Google Scholar 

  30. Bär, J., Kobler, O., van Bommel, B., Mikhaylova, M.: Periodic F-actin structures shape the neck of dendritic spines. Sci. Rep. 6, 37136(1–9) (2016)

    Google Scholar 

  31. D’Este, E., Kamin, D., Balzarotti, F., Hell, S.W.: Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy. PNAS 114(2), 191–199 (2016)

    Google Scholar 

  32. D’Este, E., Kamin, D., Velte, C., Göttfert, F., Simons, M., Hell, S.W.: Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6, 22741(1–8) (2016)

    Google Scholar 

  33. He, J., et al.: Prevalent presence of periodic actin−spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. PNAS 113(21), 6029–6034 (2016)

    Article  Google Scholar 

  34. Leite, S.C., Sousa, M.M.: The neuronal and actin commitment: Why do neurons need rings? Cytoskeleton 73(9), 424–434 (2016)

    Article  Google Scholar 

  35. Roy, S.: Waves, rings, and trails: The scenic landscape of axonal actin. J Cell Biol. 212(2), 131–134 (2016)

    Article  Google Scholar 

  36. Sidenstein, S.C., D’Este, E., Böhm, M.J., Danzl, J.G., Belov, V.N., Hell, S.W.: Multicolour multilevel STED nanoscopy of actin/spectrin organization at synapses. Sci. Rep. 6, 26725(1–8) (2016)

    Google Scholar 

  37. Han, B., Zhou, R., Xia, C., Zhuang, X.: Structural organization of the actin-spectrin–based membrane skeleton in dendrites and soma of neurons. PNAS 114(32), 6678–6685 (2017)

    Article  Google Scholar 

  38. Leterrier, C., Dubey, P., Roy, S.: The nano-architecture of the axonal cytoskeleton. Nat. Rev. Neurosci. 18(12), 713–726 (2017)

    Article  Google Scholar 

  39. Hauser, M., Yan, R., Li, W., Repina, N.A., Schaffer, D.V., Xu, K.: The spectrin-actin-based periodic cytoskeleton as a conserved nanoscale scaffold and ruler of the neural stem cell lineage. Cell Rep. 24(6), 1512–1522 (2018)

    Article  Google Scholar 

  40. Vassilopoulos, S., Gibaud, S., Jimenez, A., Caillol, G., Leterrier, C.: Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings. Nat. Commun. 10, 5803(1–13) (2019)

    Google Scholar 

  41. Lorenzo, D.N.: Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton 77(3–4), 129–148 (2020)

    Article  Google Scholar 

  42. Chu, C., Zhong, G., Li, H.: Structure and function of subcortical periodic cytoskeleton throughout the nervous system. STEMedicine 1(1), e9(1–8) (2020)

    Google Scholar 

  43. Leterrier, C.: Putting the axonal periodic scaffold in order. Curr. Opin. Neurobiol. 69, 33–40 (2021)

    Article  Google Scholar 

  44. Zahavi, E.E., Hoogenraad, C.C.: Multiple layers of spatial regulation coordinate axonal cargo transport. Curr. Opin. Neurobiol. 69, 241–246 (2021)

    Article  Google Scholar 

  45. Pisano/Fibonacci, L.: Liber Abaci (Book of Calculations), Codice Magliabechiano, Conventi Sopressi C. 1, 2616, Biblioteca Nazionale Centrale di Firenze, Florence, Italy (1202). https://bibdig.museogalileo.it/Teca/Viewer?an=1072400. Accessed 06 June 2022

  46. Sigler, L.E.: Fibonacci’s Liber Abaci − A Translation into Modern English of Leonardo Pisano’s Book of Calculation. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0079-3

  47. Wilson, R., Watkins, J.J. (eds.): Combinatorics: Ancient and Modern. Oxford University Press, Oxford (2015)

    MATH  Google Scholar 

  48. OEIS®: Fibonacci numbers. https://oeis.org/A000045. Accessed 06 June 2022

  49. d’Ocagne, P.M.: Sur un algorithme algébrique (On an algebraic algorithm). Nouv. Ann. Math. 2, 220–226 (1883). http://www.numdam.org/item/?id=NAM_1883_3_2__220_0. Accessed 06 June 2022

  50. d’Ocagne, P.M.: Théorie élémentaire des séries récurrentes (Elementary theory of recurring series). Nouv. Ann. Math. 3, 65–90 (1884). http://www.numdam.org/item?id=NAM_1884_3_3__65_0. Accessed 06 June 2022

  51. d’Ocagne, P.M.: Sur une suite récurrente (On a recurring series). Bull. Soc. Math. France 14, 20–41 (1886). http://www.numdam.org/item/?id=BSMF_1886__14__20_1. Accessed 06 June 2022

  52. Schlegel, V.: Petites observations mathématiques (Minor mathematical remarks). El Progreso Matemático 4(5), 169–177 (1894). http://hemerotecadigital.bne.es/issue.vm?id=0004532418. Accessed 06 June 2022

  53. Miles, E.P., Jr.: Generalized Fibonacci numbers and associated matrices. Am. Math. Mon. 67(8), 745–752 (1960)

    Article  MathSciNet  Google Scholar 

  54. Ferguson, D.E.: An expression for generalized Fibonacci numbers. Fibonacci Quart. 4(3), 270–273 (1966)

    MathSciNet  MATH  Google Scholar 

  55. Miller, M.D.: On generalized Fibonacci numbers. Am. Math. Mon. 78(10), 1108–1109 (1971)

    Article  Google Scholar 

  56. OEIS®: Tribonacci numbers. https://oeis.org/A000073. Accessed 06 June 2022

  57. OEIS®: Tetranacci numbers. https://oeis.org/A000078. Accessed 06 June 2022

  58. OEIS®: Pentanacci numbers. https://oeis.org/A001591. Accessed 06 June 2022

  59. OEIS®: Hexanacci numbers. https://oeis.org/A001592. Accessed 06 June 2022

  60. OEIS®: Heptanacci numbers. https://oeis.org/A122189. Accessed 06 June 2022

  61. OEIS®: Octanacci numbers. https://oeis.org/A079262. Accessed 06 June 2022

  62. OEIS®: Enneanacci numbers. https://oeis.org/A104144. Accessed 06 June 2022

  63. OEIS®: Decanacci numbers. https://oeis.org/A122265. Accessed 06 June 2022

  64. OEIS®: 11-nacci numbers. https://oeis.org/A168082. Accessed 06 June 2022

  65. OEIS®: Dodecanacci numbers. https://oeis.org/A207539. Accessed 06 June 2022

  66. OEIS®: 13-nacci numbers. https://oeis.org/A163551. Accessed 06 June 2022

  67. Shane, H.D.: A Fibonacci probability function. Fibonacci Quart. 11(5), 517–522 (1973)

    Google Scholar 

  68. Turner, S.J.: Probability via the nth-order Fibonacci-T sequence. Fibonacci Quart. 17(1), 23–28 (1979)

    MATH  Google Scholar 

  69. Philippou, A.N., Georghiou, C., Philippou, G.N.: Fibonacci-type polynomials of order k with probability applications. Fibonacci Quart. 23(2), 100–105 (1985)

    MathSciNet  MATH  Google Scholar 

  70. Spickerman, W.R., Joyner, R.N.: Binet’s formula for the recursive sequence of order k. Fibonacci Quart. 22(4), 327–331 (1984)

    MathSciNet  MATH  Google Scholar 

  71. Wolfram, D.A.: Solving generalized Fibonacci recurrences. Fibonacci Quart. 36(2), 129–145 (1998)

    MathSciNet  MATH  Google Scholar 

  72. Hare, K., Prodinger, H., Shallit, J.: Three series for the generalized golden mean. Fibonacci Quart. 52(4), 307–313 (2014)

    MathSciNet  MATH  Google Scholar 

  73. Forsyth, M., Jayakumar, A., Shallit, J.: Remarks on privileged words. Int. J. Found. Comput. Sci. 27(4), 431–442 (2016)

    Article  MathSciNet  Google Scholar 

  74. Lee, G.-Y., Lee, S.-G., Kim, J.-S., Shin, H.-K.: The Binet formula and representations of k-generalized Fibonacci numbers. Fibonacci Quart. 39(2), 158–164 (2001)

    MathSciNet  MATH  Google Scholar 

  75. Kessler, D., Schiff, J.: A combinatoric proof and generalization of Ferguson’s formula for k-generalized Fibonacci numbers. Fibonacci Quart. 42(3), 266–273 (2004)

    MathSciNet  MATH  Google Scholar 

  76. Howard, F.T., Cooper, C.: Some identities for r-Fibonacci numbers. Fibonacci Quart. 49(3), 231–242 (2004)

    MathSciNet  MATH  Google Scholar 

  77. Dresden, G.P.B.: A simplified Binet formula for k-generalized Fibonacci numbers. arXiv Number Theory (math.NT) 0905.0304 (2009). https://arxiv.org/abs/0905.0304. Accessed 06 June 2022

  78. Dresden, G.P.B., Du, Z.: A simplified Binet formula for k-generalized Fibonacci numbers. J. Integer Seq. 17(4) (2014). Art. 14.4.7

    Google Scholar 

  79. Beiu, R.-M., Hoară, S.-H., Drăgoi, V.-F., Beiu, V.: 3D hammocks and 2.5D consecutive – Biology fine balancing. In: Proceedings of the International Workshop Soft Computing Applications (SOFA), Arad, Romania, 27–29 November 2020 (2023, in press)

    Google Scholar 

  80. Beiu, V., Drăgoi, V.-F., Beiu, R.-M.: Why reliability for computing needs rethinking. In: Proceedings of the IEEE International Conference on Rebooting Computing (ICRC), Atlanta, GA, USA, pp. 16–25 (2020)

    Google Scholar 

Download references

Acknowledgements

This research was partly funded by a grant of the Romanian Ministry of Education and Research, CNCS-UEFISCDI, project no. PN-III-P4-ID-PCE-2020-2495, within PNCDI III (ThUNDER2 = Techniques for Unconventional Nano-Designing in the Energy-Reliability Realm).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxana-Mariana Beiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beiu, V., Hoară, SH., Beiu, RM. (2023). Bridging Reliability to Efficiency Consecutive Elegant and Simple Design. In: Dzitac, S., Dzitac, D., Filip, F.G., Kacprzyk, J., Manolescu, MJ., Oros, H. (eds) Intelligent Methods Systems and Applications in Computing, Communications and Control. ICCCC 2022. Advances in Intelligent Systems and Computing, vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-031-16684-6_33

Download citation

Publish with us

Policies and ethics