Skip to main content

Domain Adaptive Retinal Vessel Segmentation Guided by High-frequency Component

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13576))

Included in the following conference series:

  • 600 Accesses

Abstract

The morphological structure of retinal fundus blood vessels is of great significance for medical diagnosis, thus the automatic retinal vessel segmentation algorithm has become one of the research hotspots in the field of medical image processing. However, there are still several unsolved difficulties in this task: the existed methods are too sensitive to the low-frequency noise in the fundus images, and there are few annotated data sets available, and meanwhile, the retinal images of different datasets vary greatly. To solve the above problems, we propose a domain adaptive vessel segmentation algorithm with multiple image entrances called MIUnet, which is robust to the etiological noises and domain shift between diverse datasets. We apply Fourier domain adaptation and the high-frequency component filtering modules to transform the raw images into two styles, and simultaneously reduce the discrepancy between the source domain and target domain retinal images. After that, images produced by the two modules are fed into a multi-input deep segmentation model, and the full utilization of features from different modalities is ensured by the deep supervision mechanism. Experiments prove that, compared with other segmentation methods, the MIUnet has better performances in cross-domain experiments, where the IoU reaches 63% when trained on ARIA dataset and tested on the DRIVE dataset and 53% in the opposite direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Amri, S.S., Kalyankar, N.V., et al.: Image segmentation by using threshold techniques. arXiv preprint arXiv:1005.4020 (2010)

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional Nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  6. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  7. Farnell, D.J., et al.: Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators. J. Franklin Inst. 345(7), 748–765 (2008)

    Article  MATH  Google Scholar 

  8. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Li, H., et al.: An annotation-free restoration network for cataractous fundus images. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  11. Li, H., et al.: Restoration of cataract fundus images via unsupervised domain adaptation. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 516–520. IEEE (2021)

    Google Scholar 

  12. Li, T., et al.: Applications of deep learning in fundus images: a review. Med. Image Anal. 69, 101971 (2021)

    Article  Google Scholar 

  13. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via deep parsing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1377–1385 (2015)

    Google Scholar 

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  15. Lucchese, L., Mitra, S.K.: Colour image segmentation: a state-of-the-art survey. Proc. Indian National Sci. Acad. 67(2), 207–222 (2001)

    Google Scholar 

  16. Mou, L., et al.: CS-Net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80

    Chapter  Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  19. Tan, Y., Yang, K.F., Zhao, S.X., Li, Y.J.: Retinal vessel segmentation with skeletal prior and contrastive loss. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  20. Wang, A., Liu, X.: Vehicle license plate location based on improved roberts operator and mathematical morphology. In: 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, pp. 995–998. IEEE (2012)

    Google Scholar 

  21. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095 (2020)

    Google Scholar 

  22. Zhang, X.Q., Hu, Y., Xiao, Z.J., Fang, J.S., Higashita, R., Liu, J.: Machine learning for cataract classification/grading on ophthalmic imaging modalities: a survey. Mach. Intell. Res. 19(3), 184–208 (2022)

    Article  Google Scholar 

  23. Zhang, X., et al.: Adaptive feature squeeze network for nuclear cataract classification in AS-OCT image. J. Biomed. Inform. 128, 104037 (2022)

    Article  Google Scholar 

  24. Zhang, Y., et al.: A multi-branch hybrid transformer network for corneal endothelial cell segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 99–108. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_10

    Chapter  Google Scholar 

  25. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Li or Yan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Li, H., Qiu, Z., Hu, Y., Liu, J. (2022). Domain Adaptive Retinal Vessel Segmentation Guided by High-frequency Component. In: Antony, B., Fu, H., Lee, C.S., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2022. Lecture Notes in Computer Science, vol 13576. Springer, Cham. https://doi.org/10.1007/978-3-031-16525-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16525-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16524-5

  • Online ISBN: 978-3-031-16525-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics