Skip to main content

Challenges on the Use of Polymers on Green Transition

  • Chapter
  • First Online:
Global Challenges of Climate Change, Vol.1

Part of the book series: World-Systems Evolution and Global Futures ((WSEGF))

  • 251 Accesses

Abstract

With the increasing pressure to meet unprecedented levels of eco-efficiency in order to contribute to the global challenge of green transition, the transport industry, particularly aircraft, automotive, railway, and maritime, aims for superlight structures. Toward this goal, polymer and polymer-based materials, such as composites, are replacing the conventional metals as for very long time the number one material used in transport vehicles. The replacement of metals by polymers or polymer-based materials in different industries has allowed reducing the weight of structures and of transport vehicles, which generates fuel economy and a reduction in CO2 emissions. Moreover, besides the higher corrosion resistance, polymers present an ease of fitting and a flexibility of design and decoration far superior to metallic components combined with lower time and production costs. Due to the price and the required mechanical and thermal resistance, most structural composite parts currently used in transports industries, such as aeronautical and naval, are mostly based on thermoset or thermoplastic polymers where the first ones are difficult to recycle because of the polymer chains reticulation occurring during the resin curing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åkesson, D., Vrignaud, T., Tissot, C., & Skrifvars, M. (2016). Mechanical recycling of PLA filled with a high level of cellulose fibres. Journal of Polymers and the Environment., 24(3), 185–195.

    Article  Google Scholar 

  • Alves, C., Ferrão, P. M. C., Freitas, M., Silva, A. J., Luz, S. M., & Alves, D. E. (2009). Sustainable design procedure: The role of composite materials to combine mechanical and environmental features for agricultural machines. Materials and Design., 30, 4060–4068.

    Article  Google Scholar 

  • Alves, C., Dias, A. P. S., Diogo, A. C., Ferrão, P. M. C., Luz, S. M., Silva, A. J., Reis, L., & Freitas, M. (2010a). Eco-composite: The effects of the jute fiber treatments on the mechanical and environmental performance of the composite materials. Journal of Composite Materials, 45(5), 573–589.

    Article  Google Scholar 

  • Alves, C., Ferrão, P. M. C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010b). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18, 313–327.

    Article  Google Scholar 

  • Asmatulu, E., Twomey, J., & Overcash, M. (2014). Recycling of fiber reinforced composites and direct structural composite recycling concept. Journal of Composite Materials, 48, 593–608.

    Article  Google Scholar 

  • Beg, M. D. H., & Pickering, K. L. (2008). Reprocessing of wood fibre reinforced polypropylene composites. Part I: Effects on physical and mechanical properties. Composites Part A-Applied. Science and Manufacturing, 39(7), 1091–1100.

    Article  Google Scholar 

  • Brezet, H., & van Hemer, C. (1997). Ecodesign: A promising approach to sustainable production and consumption. United Nations Environment Programme, Industry and Environment, Cleaner Production, Delft University of Technology.

    Google Scholar 

  • Campos, A. A., Henriques, E., & Magee, C. L. (2022). Technological improvement rates and recent innovation trajectories in automated advanced composites manufacturing technologies: A patent-based analysis. Composites Part B: Engineering, 238, 109888.

    Article  Google Scholar 

  • Canut, F. A., Simões, A. M. P., Reis, L., Freitas, M., Bastos, I. N., Castro, F. C., & Mamyia, E. N. (2019). Monitoring of corrosion-fatigue degradation of grade R4 steel using an electrochemical-mechanical combined approach. Fatigue and Fracture of Engineering materials & Structures, 42(11), 2509–2519.

    Article  Google Scholar 

  • Costa, P. R., Soares, H., Reis, L., & Freitas, M. (2020). Ultrasonic fatigue testing under multiaxial loading on a railway steel. International Journal of Fatigue, 136, 105581.

    Article  Google Scholar 

  • Dong, C. (2018). Review of natural fibre-reinforced hybrid composites. Journal of Reinforced Plastics and Composites, 37(5), 331–248.

    Article  Google Scholar 

  • Fonseca-Valero, C., Ochoa-Mendoza, A., Arranz-Andrés, J., & González-Sanchez, C. (2015). Mechanical recycling and composition effects on the properties and structure of hardwood cellulose-reinforced high density polyethylene eco-composites, composites part A-applied. Science and Manufacturing, 69, 94–104.

    Article  Google Scholar 

  • Freitas, M. (2017). Multiaxial fatigue: From materials testing to life prediction. Theoretical and Applied Fracture Mechanics, 92, 360–372.

    Article  Google Scholar 

  • Gopalraj, S. K., & Kärki, T. (2020). A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: Fibre recovery, properties and life-cycle analysis. SN Applied Sciences, 2(4), 33.

    Google Scholar 

  • Jody, B. J., Pomykala, J. A., Jr., Daniels, E. J., et al. (2004). A process to recover carbon fbers from polymer-matrix composites in end-of-life vehicles. Journal of the Minerals, Metals, and Materials Society., 56, 43–47.

    Article  Google Scholar 

  • Lage, Y., Cachão, H., Reis, L., Freitas, M., & Ribeiro, A. (2014). A damage parameter for HCF and VHCF based on hysteretic damping. International Journal of Fatigue, 62, 2–9.

    Article  Google Scholar 

  • Leão, R. M., Luz, S. M., Araújo, J. A., & Christoforo, A. L. (2015). The recycling of sugarcane fiber/polypropylene composites. Materials Research, 18(4), 690–697.

    Article  Google Scholar 

  • Luz, S. M., Ferrão, P. M. C., Alves, C., Freitas, M., & Caldeira-Pires, A. (2010). Ecodesign applied to components based on sugarcane fibers composites. Materials Science Forum, 636-637, 226–232.

    Article  Google Scholar 

  • McConnell, V. P. (2010). Launching the carbon fibre recycling industry. Reinforced Plastics., 54(2), 33–37.

    Article  Google Scholar 

  • Meng, F., Olivetti, E. A., Zhao, Y., Chang, J. C., Pickering, S. J., & McKechnie, J. (2018). Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options. ACS Sustainable Chemistry and Engineering., 6(8), 9854–9865.

    Article  Google Scholar 

  • Meng, F., McKechnie, J., Turner, T. A., & Pickering, S. J. (2017). Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres. Composites Part A: Applied Science and Manufacturing., 100, 206–214.

    Article  Google Scholar 

  • Meyer, L. O., Schulte, K., & Grove-Nielsen, E. (2009). CFRP-recycling following a pyrolysis route: Process optimization and potentials. Journal of Composite Materials, 43, 1121–1132.

    Article  Google Scholar 

  • Oliveux, G., Dandy, L. O., & Leeke, G. A. (2015). Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Progress in Materials Science, 72, 61–99.

    Article  Google Scholar 

  • Palmer, J., Ghita, O. R., Savage, L., et al. (2009). Successful closed loop recycling of thermoset composites. Composites Part A: Applied Science and Manufacturing., 40, 490–498.

    Article  Google Scholar 

  • Pegoretti, A. (2021). Towards sustainable structural composites: A review on the recycling of continuous-fiber-reinforced thermoplastics. Advanced Industrial and Engineering Polymer Research., 4(2), 105–115.

    Article  Google Scholar 

  • Petchwattana, N., Covavisaruch, S., & Sanetuntikul, J. (2012). Recycling of wood-plastic composites prepared from poly(vinyl chloride) and wood flour. Construction and Building Materials., 28(1), 557–560.

    Article  Google Scholar 

  • Pickering, S. J. (2006). Recycling technologies for thermoset composite materials current status. Composites Part A: Applied Science and Manufacturing., 37, 1206–1215.

    Article  Google Scholar 

  • Pickering, S. J., Kelly, R. M., Kennerley, J. R., et al. (2000). A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Composites Science and Technology, 60, 509–523.

    Article  Google Scholar 

  • Pickering, S. J., Turner, T. A., Meng, F., et al. (2015). Developments in the fluidised bed process for fibre recovery from thermoset composites. In CAMX 2015–Composites and advanced materials expo (pp. 2384–2394).

    Google Scholar 

  • Pimenta, S., & Pinho, S. T. (2011). Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Management., 31, 378–392.

    Article  Google Scholar 

  • Rademacker, T. (2018). Challenges in CFRP recycling. In Breaking & sifting–expert exchange on the end-of-life of wind turbines (pp. 24–55). Federal Ministry for Economic Affairs and Energy.

    Google Scholar 

  • Reis, L., Carvalho, P., Alves, C., & Freitas, M. (2010). Mechanical behaviour of sandwich beams manufactured with glass or jute fiber in facings and cork agglomerates as core. Materials Science Forum, 636-637, 245–252.

    Article  Google Scholar 

  • Roberts, T. (2007). Rapid growth forecast for carbon fibre market. Reinforced Plastics., 51, 10–13.

    Article  Google Scholar 

  • Rodrigues, G. G. M., Faulstich De Paiva, J. M., Braga Do Carmo, J., et al. (2014). Recycling of carbon fibers inserted in composite of DGEBA epoxy matrix by thermal degradation. Polymer Degradation and Stability., 109, 50–58.

    Article  Google Scholar 

  • Sauer, M., Kuhnel, M., & Witten, E. (2017). Composites Market Report 2017–Market developments, trends, outlook and challenges.

    Google Scholar 

  • Shen, Y. (2018). Effect of chemical pretreatment on pyrolysis of non-metallic fraction recycled from waste printed circuit boards. Waste Management., 76, 537–543.

    Article  Google Scholar 

  • Shi, J., Bao, L., Kobayashi, R., et al. (2012). Reusing recycled fibers in high-value fiber-reinforced polymer composites: Improving bending strength by surface cleaning. Composites Science and Technology, 72, 1298–1303.

    Article  Google Scholar 

  • Soares, B. A. R., Henriques, E., Ribeiro, I., & Freitas, M. (2019). Cost analysis of alternative automated technologies for composite parts production. International Journal of Production Research, 57(6), 1797–1810.

    Article  Google Scholar 

  • Viksne, A., & Rence, L. (2008). Effect of re-compounding on the properties of polypropylene/wood flour composites. Progress in Rubber. Plastics and Recycling Technology., 24(3), 153–169.

    Article  Google Scholar 

  • Vo Dong, P. A., Azzaro-Pantel, C., & Cadene, A.-L. (2018). Economic and environmental assessment of recovery and disposal pathways for CFRP waste management. Resources, Conservation and Recycling., 133, 63–75.

    Article  Google Scholar 

  • Warren, C. D. (1999). Present and future automotive composite materials research efforts at DOE, proceedings of ICCMM (pp. 260–271).

    Google Scholar 

  • Wong, K., Rudd, C., Pickering, S., et al. (2017). Composites recycling solutions for the aviation industry. Science China Technological Sciences., 60, 1291–1300.

    Article  Google Scholar 

  • Xu, S., Fang, Y., Yi, S., He, J., Zhai, X., Song, Y., Wang, H., & Wang, Q. (2018). Effects of lithium chloride and chain extender on the properties of wood fiber reinforced polyamide 6 composites. Polymer Testing., 72, 132–139.

    Article  Google Scholar 

  • Zhao, X., Copenhaver, K., Wang, L., Korey, M., Gardner, D. J., Li, K., Lamm, M. E., Kishore, V., Bhagia, S., Tajvidi, M., Tekinalp, H., Oyedeji, O., Wasti, S., Webb, E., Ragauskasf, A. J., Zhu, H., Peter, W. H., & Ozcan, S. (2022). Recycling of natural fiber composites: Challenges and opportunities and opportunities. Resources, Conservation & Recycling, 177, 105962.

    Article  Google Scholar 

  • Zhou, B., Liu, B., & Zhang, S. (2021). The advancement of 7XXX series aluminum alloys for aircraft structures: A review. Metals, 11, 718–747.

    Article  Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duarte, A.P., Freitas, M. (2022). Challenges on the Use of Polymers on Green Transition. In: Devezas, T.C., Leitão, J.C.C., Yegorov, Y., Chistilin, D. (eds) Global Challenges of Climate Change, Vol.1. World-Systems Evolution and Global Futures. Springer, Cham. https://doi.org/10.1007/978-3-031-16470-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16470-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16469-9

  • Online ISBN: 978-3-031-16470-5

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics