Skip to main content

Nonlinear Regression of Remaining Surgical Duration via Bayesian LSTM-Based Deep Negative Correlation Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

  • 5408 Accesses

Abstract

In this paper, we address the problem of estimating remaining surgical duration (RSD) from surgical video frames. We propose a Bayesian long short-term memory (LSTM) network-based Deep Negative Correlation Learning approach called BD-Net for accurate regression of RSD prediction as well as estimating prediction uncertainty. Our method aims to extract discriminative visual features from surgical video frames and model the temporal dependencies among frames to improve the RSD prediction accuracy. To this end, we propose to ensemble a group of Bayesian LSTMs on top of a backbone network by the way of deep negative correlation learning (DNCL). More specifically, we deeply learn a pool of decorrelated Bayesian regressors with sound generalization capabilities through managing their intrinsic diversities. BD-Net is simple and efficient. After training, it can produce both RSD prediction and uncertainty estimation in a single inference run. We demonstrate the efficacy of BD-Net on a public video dataset containing 101 cataract surgeries. The experimental results show that the proposed BD-Net achieves better results than the state-of-the-art (SOTA) methods. A reference implementation of our method can be found at: https://github.com/jywu511/BD-Net.

This study was partially supported by Shanghai Municipal S &T Commission via Project 20511105205 and by the Natural Science Foundation of China via project U20A20199.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aksamentov, I., Twinanda, A.P., Mutter, D., Marescaux, J., Padoy, N.: Deep Neural Networks Predict Remaining Surgery Duration from Cholecystectomy Videos. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 586–593. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_66

    Chapter  Google Scholar 

  2. Bhatia, B., Oates, T., Xiao, Y., Hu, P.: Real-time identification of operating room state from video. In: AAAI, vol. 2, pp. 1761–1766 (2007)

    Google Scholar 

  3. Bricon-Souf, N., Newman, C.R.: Context awareness in health care: a review. Int. J. Med. Inform. 76(1), 2–12 (2007)

    Google Scholar 

  4. Devi, S.P., Rao, K.S., Sangeetha, S.S.: Prediction of surgery times and scheduling of operation theaters in optholmology department. J. Med. Syst. 36(2), 415–430 (2012)

    Article  Google Scholar 

  5. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  6. Edelman, E.R., Van Kuijk, S.M., Hamaekers, A.E., De Korte, M.J., Van Merode, G.G., Buhre, W.F.: Improving the prediction of total surgical procedure time using linear regression modeling. Front. Med. 4, 85 (2017)

    Article  Google Scholar 

  7. Eijkemans, M.J., Van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E.W., Kazemier, G.: Predicting the unpredictable: a new prediction model for operating room times using individual characteristics and the surgeon’s estimate. J. Am. Soc. Anesthesiol. 112(1), 41–49 (2010)

    Article  Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv preprint arXiv:1506.02158 (2016)

  9. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  10. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  12. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  13. Kumar, A., Kim, J., Lyndon, D., Fulham, M., Feng, D.: An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J. Biomed. Health Inform. 21(1), 31–40 (2016)

    Article  Google Scholar 

  14. Liu, Y., Yao, X., Higuchi, T.: Evolutionary ensembles with negative correlation learning. IEEE Trans. Evol. Comput. 4(4), 380–387 (2000)

    Article  Google Scholar 

  15. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  16. Marafioti, A., et al.: CataNet: predicting remaining cataract surgery duration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 426–435. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_41

  17. Rivoir, D., et al.: Rethinking anticipation tasks: uncertainty-aware anticipation of sparse surgical instrument usage for context-aware assistance. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 752–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_72

  18. Schoeffmann, K., Taschwer, M., Sarny, S., Münzer, B., Primus, M.J., Putzgruber, D.: Cataract-101: video dataset of 101 cataract surgeries. In: Proceedings of the 9th ACM Multimedia Systems Conference, pp. 421–425 (2018)

    Google Scholar 

  19. Sert, E., Ertekin, S., Halici, U.: Ensemble of convolutional neural networks for classification of breast microcalcification from mammograms. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 689–692. IEEE (2017)

    Google Scholar 

  20. Twinanda, A.P., Yengera, G., Mutter, D., Marescaux, J., Padoy, N.: RSDNet: learning to predict remaining surgery duration from laparoscopic videos without manual annotations. IEEE Trans. Med. Imaging 38(4), 1069–1078 (2019)

    Article  Google Scholar 

  21. Yuniartha, D.R., Masruroh, N.A., Herliansyah, M.K.: An evaluation of a simple model for predicting surgery duration using a set of surgical procedure parameters. Inform. Med. Unlocked 25, 100633 (2021)

    Article  Google Scholar 

  22. Zhang, L., et al.: Nonlinear regression via deep negative correlation learning. IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 982–998 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 732 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Tao, R., Zheng, G. (2022). Nonlinear Regression of Remaining Surgical Duration via Bayesian LSTM-Based Deep Negative Correlation Learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics