Skip to main content

Learning-Based and Unrolled Motion-Compensated Reconstruction for Cardiac MR CINE Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13436))

Abstract

Motion-compensated MR reconstruction (MCMR) is a powerful concept with considerable potential, consisting of two coupled sub-problems: Motion estimation, assuming a known image, and image reconstruction, assuming known motion. In this work, we propose a learning-based self-supervised framework for MCMR, to efficiently deal with non-rigid motion corruption in cardiac MR imaging. Contrary to conventional MCMR methods in which the motion is estimated prior to reconstruction and remains unchanged during the iterative optimization process, we introduce a dynamic motion estimation process and embed it into the unrolled optimization. We establish a cardiac motion estimation network that leverages temporal information via a group-wise registration approach, and carry out a joint optimization between the motion estimation and reconstruction. Experiments on 40 acquired 2D cardiac MR CINE datasets demonstrate that the proposed unrolled MCMR framework can reconstruct high quality MR images at high acceleration rates where other state-of-the-art methods fail. We also show that the joint optimization mechanism is mutually beneficial for both sub-tasks, i.e., motion estimation and image reconstruction, especially when the MR image is highly undersampled.

T. Küstner and K. Hammernik—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: Model based image reconstruction using deep learned priors (MODL). In: IEEE International Symposium on Biomedical Imaging (ISBI), pp. 671–674 (2018)

    Google Scholar 

  2. Ahmad, R., Xue, H., Giri, S., et al.: Variable density incoherent spatiotemporal acquisition (VISTA) for highly accelerated cardiac MRI. Magn. Reson. Med. 74(5), 1266–1278 (2015)

    Article  Google Scholar 

  3. Aviles-Rivero, A.I., Debroux, N., Williams, G., et al.: Compressed sensing plus motion (CS + M): a new perspective for improving undersampled MR image reconstruction. Med. Image Anal. 68, 101933 (2021)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., et al.: An unsupervised learning model for deformable medical image registration. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  5. Balakrishnan, G., Zhao, A., Sabuncu, M.R., et al.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  6. Batchelor, P., Atkinson, D., Irarrazaval, P., Hill, D., et al.: Matrix description of general motion correction applied to multishot images. Magn. Reson. Med. 54, 1273–1280 (2005)

    Article  Google Scholar 

  7. Bustin, A., Rashid, I., Cruz, G., et al.: 3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated prost. J. Cardiovasc. Magn. Reson. 22(1) (2020)

    Google Scholar 

  8. Cruz, G., Hammernik, K., Kuestner, T., et al.: One-heartbeat cardiac cine imaging via jointly regularized non-rigid motion corrected reconstruction. In: Proceedings of International Society for Magnetic Resonance in Medicine (ISMRM), p. 0070 (2021)

    Google Scholar 

  9. Cruz, G., Atkinson, D., Henningsson, M., et al.: Highly efficient nonrigid motion-corrected 3D whole-heart coronary vessel wall imaging. Magn. Reson. Med. 77(5), 1894–1908 (2017)

    Article  Google Scholar 

  10. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)

    Article  Google Scholar 

  11. Hammernik, K., Klatzer, T., Kobler, E., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  12. Hammernik, K., Pan, J., Rueckert, D., Küstner, T.: Motion-guided physics-based learning for cardiac MRI reconstruction. In: Asilomar Conference on Signals, Systems, and Computers (2021)

    Google Scholar 

  13. Huang, W., Ke, Z., Cui, Z.X., et al.: Deep low-rank plus sparse network for dynamic MR imaging. Med. Image Anal. 73, 102190 (2021)

    Article  Google Scholar 

  14. Jung, H., Sung, K., Nayak, K.S., et al.: k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 61(1), 103–116 (2009)

    Article  Google Scholar 

  15. Klein, S., Staring, M., Murphy, K., et al.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2009)

    Article  Google Scholar 

  16. von Knobelsdorff-Brenkenhoff, F., Pilz, G., Schulz-Menger, J.: Representation of cardiovascular magnetic resonance in the AHA/ACC guidelines. J. Cardiovasc. Magn. Reson. 19(1), 1–21 (2017)

    Article  Google Scholar 

  17. Küstner, T., Fuin, N., Hammernik, K., et al.: CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  18. Lee, D., Markl, M., Dall’Armellina, E., et al.: The growth and evolution of cardiovascular magnetic resonance: a 20-year history of the society for cardiovascular magnetic resonance (SCMR) annual scientific sessions. J. Cardiovasc. Magn. Reson. 20(1) (2018)

    Google Scholar 

  19. Liu, F., Li, D., Jin, X., et al.: Dynamic cardiac MRI reconstruction using motion aligned locally low rank tensor (MALLRT). Magn. Reson. Imaging 66, 104–115 (2020)

    Article  Google Scholar 

  20. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (19) (2017)

  21. Modat, M., Ridgway, G.R., Taylor, Z.A., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  22. Mok, T.C.W., Chung, A.C.S.: Conditional deformable image registration with convolutional neural network. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 35–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_4

    Chapter  Google Scholar 

  23. Odille, F., Vuissoz, P., Marie, P., Felblinger, J.: Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI. Magn. Reson. Med. 60, 146–157 (2008)

    Article  Google Scholar 

  24. Odille, F., Menini, A., Escanyé, J.M., et al.: Joint reconstruction of multiple images and motion in MRI: application to free-breathing myocardial \({\rm t}_{2}\) quantification. IEEE Trans. Med. Imaging 35(1), 197–207 (2016)

    Article  Google Scholar 

  25. Pan, J., Rueckert, D., Küstner, T., Hammernik, K.: Efficient image registration network for non-rigid cardiac motion estimation. In: Haq, N., Johnson, P., Maier, A., Würfl, T., Yoo, J. (eds.) Machine Learning for Medical Image Reconstruction, pp. 14–24 (2021)

    Google Scholar 

  26. Poddar, S., Jacob, M.: Dynamic MRI using smoothness regularization on manifolds (SToRM). IEEE Trans. Med. Imaging 35(4), 1106–1115 (2016)

    Article  Google Scholar 

  27. Pruessmann, K.P., Weiger, M., Börnert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med. 46, 638–651 (2001)

    Article  Google Scholar 

  28. Qi, H., Fuin, N., Cruz, G., et al.: Non-rigid respiratory motion estimation of whole-heart coronary MR images using unsupervised deep learning. IEEE Trans. Med. Imaging 40(1), 444–454 (2021)

    Article  Google Scholar 

  29. Qi, H., Hajhosseiny, R., Cruz, G., et al.: End-to-end deep learning nonrigid motion-corrected reconstruction for highly accelerated free-breathing coronary MRA. Magn. Reson. Med. 86(1), 1983–1996 (2021)

    Article  Google Scholar 

  30. Qin, C., Duan, J., Hammernik, K., et al.: Complementary time-frequency domain networks for dynamic parallel MR image reconstruction. Magn. Reson. Med. 86(6), 3274–3291 (2021)

    Article  Google Scholar 

  31. Sandino, C.M., Lai, P., Vasanawala, S.S., Cheng, J.Y.: Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magn. Reson. Med. 85(1), 152–167 (2021)

    Article  Google Scholar 

  32. Schmoderer, T., Aviles-Rivero, A.I., Corona, V., et al.: Learning optical flow for fast MRI reconstruction. Inverse Probl. 37(9), 095007 (2021)

    Google Scholar 

  33. Sun, D., Yang, X., Liu, M., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8934–8943 (2018)

    Google Scholar 

  34. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. Neuro Image 45(1), S61–S72 (2009)

    Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Research Council (Grant Agreement no. 884622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhen Pan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2486 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J., Rueckert, D., Küstner, T., Hammernik, K. (2022). Learning-Based and Unrolled Motion-Compensated Reconstruction for Cardiac MR CINE Imaging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics