Skip to main content

AutoGAN-Synthesizer: Neural Architecture Search for Cross-Modality MRI Synthesis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13436))

Abstract

Considering the difficulty to obtain complete multi-modality MRI scans in some real-world data acquisition situations, synthesizing MRI data is a highly relevant and important topic to complement diagnosis information in clinical practice. In this study, we present a novel MRI synthesizer, called AutoGAN-Synthesizer, which automatically discovers generative networks for cross-modality MRI synthesis. Our AutoGAN-Synthesizer adopts gradient-based search strategies to explore the generator architecture by determining how to fuse multi-resolution features and utilizes GAN-based perceptual searching losses to handle the trade-off between model complexity and performance. Our AutoGAN-Synthesizer can search for a remarkable and light-weight architecture with 6.31 Mb parameters only occupying 12 GPU hours. Moreover, to incorporate richer prior knowledge for MRI synthesis, we derive K-space features containing the low- and high-spatial frequency information and incorporate such features into our model. To our best knowledge, this is the first work to explore AutoML for cross-modality MRI synthesis, and our approach is also capable of tailoring networks given either different multiple modalities or just a single modality as input. Extensive experiments show that our AutoGAN-Synthesizer outperforms the state-of-the-art MRI synthesis methods both quantitatively and qualitatively. The code are available at https://github.com/HUuxiaobin/AutoGAN-Synthesizer.

X. Hu and R. Shen—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://brain-development.org/ixi-dataset/.

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: Multi-shot sensitivity-encoded diffusion MRI using model-based deep learning (MODL-MUSSELS). In: ISBI, pp. 1541–1544. IEEE (2019)

    Google Scholar 

  2. Armanious, K., et al.: MedGAN: medical image translation using GANs. Comput. Med. Imaging Graph. 79, 101684 (2020)

    Article  Google Scholar 

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  5. Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans. Med. Imaging 37(3), 803–814 (2017)

    Article  Google Scholar 

  6. Costa, P., et al.: End-to-end adversarial retinal image synthesis. IEEE Trans. Med. Imaging 37(3), 781–791 (2017)

    Article  Google Scholar 

  7. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Çukur, T.: Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019)

    Article  Google Scholar 

  8. Gou, Y., Li, B., Liu, Z., Yang, S., Peng, X.: Clearer: multi-scale neural architecture search for image restoration. NeurIPS. 33, 17129–17140 (2020)

    Google Scholar 

  9. Han, Y., Sunwoo, L., Ye, J.C.: k-space deep learning for accelerated MRI. IEEE Trans. Med. Imaging 39(2), 377–386 (2019)

    Article  Google Scholar 

  10. Hu, X.: Multi-texture GAN: exploring the multi-scale texture translation for brain MR images. arXiv preprint arXiv:2102.07225 (2021)

  11. Huang, Y., Shao, L., Frangi, A.F.: Simultaneous super-resolution and cross-modality synthesis of 3d medical images using weakly-supervised joint convolutional sparse coding. In: CVPR, pp. 6070–6079 (2017)

    Google Scholar 

  12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125–1134 (2017)

    Google Scholar 

  13. Joyce, T., Chartsias, A., Tsaftaris, S.A.: Robust multi-modal MR image synthesis. In: Descoteaux, M., et al. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 347–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_40

    Chapter  Google Scholar 

  14. Jun, Y., Shin, H., Eo, T., Hwang, D.: Joint deep model-based MR image and coil sensitivity reconstruction network (Joint-ICNet) for fast MRI. In: CVPR, pp. 5270–5279 (2021)

    Google Scholar 

  15. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Chapter  Google Scholar 

  18. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. In: ICLR (2018)

    Google Scholar 

  19. Liu, Z., Wang, H., Zhang, S., Wang, G., Qi, J.: NAS-SCAM: neural architecture search-based spatial and channel joint attention module for nuclei semantic segmentation and classification. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 263–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_26

    Chapter  Google Scholar 

  20. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  21. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  22. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR, pp. 3883–3891 (2017)

    Google Scholar 

  23. Nie, D., et al.: Medical image synthesis with deep convolutional adversarial networks. IEEE Trans. Biomed. Eng. 65(12), 2720–2730 (2018)

    Article  Google Scholar 

  24. Qianye, Y., Li, N., Zhao, Z., Xingyu, F., Eric, I., Chang, C., Xu, Y.: MRI cross-modality image-to-image translation. Sci. Rep. 10(1), 1–8 (2020)

    Google Scholar 

  25. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Sharma, A., Hamarneh, G.: Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans. Med. Imaging 39(4), 1170–1183 (2019)

    Article  Google Scholar 

  28. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3349–3364 (2020)

    Article  Google Scholar 

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Welander, P., Karlsson, S., Eklund, A.: Generative adversarial networks for image-to-image translation on multi-contrast MR images-a comparison of cyclegan and unit. arXiv preprint arXiv:1806.07777 (2018)

  31. Yan, X., Jiang, W., Shi, Y., Zhuo, C.: MS-NAS: multi-scale neural architecture search for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_38

    Chapter  Google Scholar 

  32. Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: EA-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 38(7), 1750–1762 (2019)

    Article  Google Scholar 

  33. Yu, B., Zhou, L., Wang, L., Shi, Y., Fripp, J., Bourgeat, P.: Sample-adaptive GANs: linking global and local mappings for cross-modality MR image synthesis. IEEE Trans. Med. Imaging 39(7), 2339–2350 (2020)

    Article  Google Scholar 

  34. Yurt, M., Dar, S.U., Erdem, A., Erdem, E., Oguz, K.K., Çukur, T.: mustGAN: multi-stream generative adversarial networks for MR image synthesis. Med. Image Anal. 70, 101944 (2021)

    Article  Google Scholar 

  35. Zhang, H., Li, Y., Chen, H., Shen, C.: Memory-efficient hierarchical neural architecture search for image denoising. In: CVPR, pp. 3657–3666 (2020)

    Google Scholar 

  36. Zhang, R., Pfister, T., Li, J.: Harmonic unpaired image-to-image translation. arXiv preprint arXiv:1902.09727 (2019)

  37. Zhang, Y., Li, K., Li, K., Fu, Y.: MR image super-resolution with squeeze and excitation reasoning attention network. In: CVPR, pp. 13425–13434 (2021)

    Google Scholar 

  38. Zhou, T., Fu, H., Chen, G., Shen, J., Shao, L.: Hi-net: hybrid-fusion network for multi-modal MR image synthesis. IEEE Trans. Med. Imaging 39(9), 2772–2781 (2020)

    Article  Google Scholar 

  39. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, pp. 2223–2232 (2017)

    Google Scholar 

  40. Zhu, Z., Liu, C., Yang, D., Yuille, A., Xu, D.: V-NAS: neural architecture search for volumetric medical image segmentation. In: 3DV, pp. 240–248. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1447 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X., Shen, R., Luo, D., Tai, Y., Wang, C., Menze, B.H. (2022). AutoGAN-Synthesizer: Neural Architecture Search for Cross-Modality MRI Synthesis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics