Skip to main content

Robust Segmentation of Brain MRI in the Wild with Hierarchical CNNs and No Retraining

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Retrospective analysis of brain MRI scans acquired in the clinic has the potential to enable neuroimaging studies with sample sizes much larger than those found in research datasets. However, analysing such clinical images “in the wild” is challenging, since subjects are scanned with highly variable protocols (MR contrast, resolution, orientation, etc.). Nevertheless, recent advances in convolutional neural networks (CNNs) and domain randomisation for image segmentation, best represented by the publicly available method SynthSeg, may enable morphometry of clinical MRI at scale. In this work, we first evaluate SynthSeg on an uncurated, heterogeneous dataset of more than 10,000 scans acquired at Massachusetts General Hospital. We show that SynthSeg is generally robust, but frequently falters on scans with low signal-to-noise ratio or poor tissue contrast. Next, we propose SynthSeg\(^{+}\), a novel method that greatly mitigates these problems using a hierarchy of conditional segmentation and denoising CNNs. We show that this method is considerably more robust than SynthSeg, while also outperforming cascaded networks and state-of-the-art segmentation denoising methods. Finally, we apply our approach to a proof-of-concept volumetric study of ageing, where it closely replicates atrophy patterns observed in research studies conducted on high-quality, 1 mm, T1-weighted scans. The code and trained model are publicly available at https://github.com/BBillot/SynthSeg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.: TensorFlow: a system for large-scale machine learning. In: Symposium on Operating Systems Design and Implementation, pp. 265–283 (2016)

    Google Scholar 

  2. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging 30(4), 449–459 (2017). https://doi.org/10.1007/s10278-017-9983-4

    Article  Google Scholar 

  3. Alfaro-Almagro, F., Jenkinson, M., Bangerter, N., Andersson, J., Griffanti, L., Douaud, G., et al.: Image processing and quality control for the first 10,000 brain imaging datasets from UK biobank. Neuroimage 166, 400–424 (2018)

    Article  Google Scholar 

  4. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: Medical Image Computing and Computer Assisted Intervention, pp. 924–931 (2006)

    Google Scholar 

  5. Ashburner, J., Friston, K.: Unified segmentation. Neuroimage 26(3), 39–51 (2005)

    Article  Google Scholar 

  6. Billot, B., et al.: SynthSeg: domain randomisation for segmentation of brain scans of any contrast and resolution. arXiv:2107.09559 [cs] (2021)

  7. Billot, B., Greve, D., Van Leemput, K., Fischl, B., Iglesias, J.E., Dalca, A.: A learning strategy for contrast-agnostic MRI segmentation. In: Medical Imaging with Deep Learning, pp. 75–93 (2020)

    Google Scholar 

  8. Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. J. Sci. Comput. 16, 1190–1208 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. AAAI Conf. Artif. Intell. 33, 65–72 (2019)

    Google Scholar 

  10. Choi, H., Haynor, D., Kim, Y.: Partial volume tissue classification of multichannel magnetic resonance images-a mixel model. IEEE Trans. Med. Imaging 10, 395–407 (1991)

    Article  Google Scholar 

  11. Chollet, F.: Keras (2015). https://keras.io

  12. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv:1511.07289 [cs] (2016)

  13. Coupé, P., Catheline, G., Lanuza, E., Manjón, J.: Towards a unified analysis of brain maturation and aging across the entire lifespan: a MRI analysis. Hum. Brain Mapp. 38(11), 5501–5518 (2017)

    Article  Google Scholar 

  14. Dima, D., Modabbernia, A., Papachristou, E., Doucet, G.E., et al.: Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Hum. Brain Mapp. 43(1), 452–469 (2022)

    Article  Google Scholar 

  15. Fischl, B.: FreeSurfer. NeuroImage 62, 774–781 (2012)

    Article  Google Scholar 

  16. Fischl, B., Salat, D., Busa, E., Albert, M., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 41–55 (2002)

    Article  Google Scholar 

  17. Ghafoorian, M., et al.: Transfer learning for domain adaptation in MRI: application in brain lesion segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 516–524. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_59

    Chapter  Google Scholar 

  18. Hibar, D., Stein, J., Renteria, M., Arias-Vasquez, A., et al.: Common genetic variants influence human subcortical brain structures. Nature 520, 224–229 (2015)

    Article  Google Scholar 

  19. Isensee, F., Jaeger, P., Kohl, S., Petersen, J., Maier-Hein, K.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  20. Jack, C.R., Bernstein, M., Fox, N., Thompson, P., Alexander, G., Harvey, D., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging JMRI 27(4), 685–691 (2008)

    Article  Google Scholar 

  21. Jog, A., Hoopes, A., Greve, D., Van Leemput, K., Fischl, B.: PSACNN: pulse sequence adaptive fast whole brain segmentation. Neuroimage 199, 553–569 (2019)

    Article  Google Scholar 

  22. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  23. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Med. Image Anal. 68, 101907 (2021)

    Article  Google Scholar 

  24. Khan, M., Gajendran, M., Lee, Y., Khan, M.: Deep neural architectures for medical image semantic segmentation: review. IEEE Access 9, 83002–83024 (2021)

    Article  Google Scholar 

  25. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 [cs] (2017)

  26. Kushibar, K., et al.: Supervised domain adaptation for automatic sub-cortical brain structure segmentation with minimal user interaction. Sci. Rep. 9, 6742 (2019)

    Article  Google Scholar 

  27. Larrazabal, A., Martínez, C., Glocker, B., Ferrante, E.: Post-DAE: anatomically plausible segmentation via post-processing with denoising autoencoders. IEEE Trans. Med. Imaging 39(12), 3813–3820 (2020)

    Article  Google Scholar 

  28. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  29. Nosrati, M., Hamarneh, G.: Incorporating prior knowledge in medical image segmentation: a survey. arXiv:1607.01092 [cs] (2016)

  30. Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., et al.: Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging 37(2), 384–395 (2018)

    Article  Google Scholar 

  31. Orbes-Arteaga, M., et al.: Multi-domain adaptation in brain MRI through paired consistency and adversarial learning. In: Wang, Q., et al. (eds.) DART/MIL3ID -2019. LNCS, vol. 11795, pp. 54–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33391-1_7

    Chapter  Google Scholar 

  32. Oren, O., Kebebew, E., Ioannidis, J.: Curbing unnecessary and wasted diagnostic imaging. JAMA 321(3), 245–246 (2019)

    Article  Google Scholar 

  33. Puonti, O., Iglesias, J.E., Van Leemput, K.: Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling. Neuroimage 143, 235–249 (2016)

    Article  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Roth, H.R., Oda, H., Zhou, X., Shimizu, N., Yang, Y., Hayashi, Y., et al.: An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput. Med. Imaging Graph. 66, 90–99 (2018)

    Article  Google Scholar 

  36. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: International Conference on Intelligent Robots, pp. 23–30 (2017)

    Google Scholar 

  37. Van Essen, D., Ugurbil, K., Auerbach, E., et al.: The human connectome project: a data acquisition perspective. Neuroimage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  38. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging 22, 105–119 (2003)

    Article  Google Scholar 

  39. Zhang, L., Wang, X., Yang, D., Roth, H., Xu, D., Xu, Z., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imaging 39(7), 2531–2540 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the European Research Council (ERC Starting Grant 677697), the EPSRC-funded UCL Centre for Doctoral Training in Medical Imaging (EP/L016478/1), the Department of Health’s NIHR-funded Biomedical Research Centre at UCLH, Alzheimer’s Research UK (ARUK-IRG2019A-003), and the NIH (1R01AG070988, 1RF1MH123195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Billot .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1869 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Billot, B., Magdamo, C., Arnold, S.E., Das, S., Iglesias, J.E. (2022). Robust Segmentation of Brain MRI in the Wild with Hierarchical CNNs and No Retraining. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics