Skip to main content

Exploring Smoothness and Class-Separation for Semi-supervised Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

Abstract

Semi-supervised segmentation remains challenging in medical imaging since the amount of annotated medical data is often scarce and there are many blurred pixels near the adhesive edges or in the low-contrast regions. To address the issues, we advocate to firstly constrain the consistency of pixels with and without strong perturbations to apply a sufficient smoothness constraint and further encourage the class-level separation to exploit the low-entropy regularization for the model training. Particularly, in this paper, we propose the SS-Net for semi-supervised medical image segmentation tasks, via exploring the pixel-level Smoothness and inter-class Separation at the same time. The pixel-level smoothness forces the model to generate invariant results under adversarial perturbations. Meanwhile, the inter-class separation encourages individual class features should approach their corresponding high-quality prototypes, in order to make each class distribution compact and separate different classes. We evaluated our SS-Net against five recent methods on the public LA and ACDC datasets. Extensive experimental results under two semi-supervised settings demonstrate the superiority of our proposed SS-Net model, achieving new state-of-the-art (SOTA) performance on both datasets. The code is available at https://github.com/ycwu1997/SS-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://atriaseg2018.cardiacatlas.org.

  2. 2.

    https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html.

  3. 3.

    https://github.com/yulequan/UA-MT/tree/master/data.

  4. 4.

    https://github.com/HiLab-git/SSL4MIS/tree/master/data/ACDC.

References

  1. Alonso, I., Sabater, A., Ferstl, D., Montesano, L., Murillo, A.C.: Semi-supervised semantic segmentation with pixel-level contrastive learning from a class-wise memory bank. In: ICCV 2021, pp. 8219–8228 (2021)

    Google Scholar 

  2. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  3. French, G., Laine, S., Aila, T., Mackiewicz, M., Finlayson, G.: Semi-supervised semantic segmentation needs strong, varied perturbations. arXiv preprint arXiv:1906.01916 (2019)

  4. Lai, X., et al..: Semi-supervised semantic segmentation with directional context-aware consistency. In: CVPR 2021, pp. 1205–1214 (2021)

    Google Scholar 

  5. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  6. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML 2013, vol. 3, no. 2 (2013)

    Google Scholar 

  7. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

    Chapter  Google Scholar 

  8. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 523–534 (2020)

    Article  Google Scholar 

  9. Liu, W., Wu, Z., Ding, H., Liu, F., Lin, J., Lin, G.: Few-shot segmentation with global and local contrastive learning. arXiv preprint arXiv:2108.05293 (2021)

  10. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: AAAI 2021, vol. 35, no. 10, pp. 8801–8809 (2021)

    Google Scholar 

  11. Luo, X., et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 318–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_30

    Chapter  Google Scholar 

  12. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV 2016, pp. 565–571 (2016)

    Google Scholar 

  14. Miyato, T., Maeda, S.i., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Google Scholar 

  15. Ouali, Y., Hudelot, C., Tami, M.: An overview of deep semi-supervised learning. arXiv preprint arXiv:2006.05278 (2020)

  16. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with cross-consistency training. In: CVPR 2020, pp. 12674–12684 (2020)

    Google Scholar 

  17. Pham, H., Dai, Z., Xie, Q., Le, Q.V.: Meta pseudo labels. In: CVPR 2021, pp. 11557–11568 (2021)

    Google Scholar 

  18. Ronneberger, O.: Invited talk: U-net convolutional networks for biomedical image segmentation. In: Maier-Hein, geb. Fritzsche, K., Deserno, geb. Lehmann, T., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2017. I, p. 3. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_3

  19. Sohn, K., Berthelot, D., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: NeurIPS 2020, vol. 33, pp. 596–608 (2020)

    Google Scholar 

  20. Wu, Y., et al.: Mutual consistency learning for semi-supervised medical image segmentation. Med. Image Anal. 81, 102530 (2022)

    Article  Google Scholar 

  21. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  22. Wu, Z., Lin, G., Cai, J.: Keypoint based weakly supervised human parsing. Image Vis. Comput. 91, 103801 (2019)

    Article  Google Scholar 

  23. Wu, Z., Shi, X., Lin, G., Cai, J.: Learning meta-class memory for few-shot semantic segmentation. In: ICCV 2021, pp. 517–526 (2021)

    Google Scholar 

  24. Xia, Y., et al.: 3D semi-supervised learning with uncertainty-aware multi-view co-training. In: WACV 2020, pp. 3646–3655 (2020)

    Google Scholar 

  25. Xie, Y., Zhang, J., Liao, Z., Verjans, J., Shen, C., Xia, Y.: Intra-and inter-pair consistency for semi-supervised gland segmentation. IEEE Trans. Image Process. 31, 894–905 (2021)

    Article  Google Scholar 

  26. Xiong, Z., et al.: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 67, 101832 (2021)

    Article  Google Scholar 

  27. Xu, Z., et al.: All-around real label supervision: cyclic prototype consistency learning for semi-supervised medical image segmentation. IEEE J. Biomed. Health Inform. 26(7), 3174–3184 (2022)

    Article  Google Scholar 

  28. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by Monash FIT Start-up Grant. We also appreciate the efforts to collect and share the LA and ACDC datasets [2, 26] and several public repositories [7, 10, 11, 21, 28].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1249 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J. (2022). Exploring Smoothness and Class-Separation for Semi-supervised Medical Image Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics