Skip to main content

A Spatiotemporal Model for Precise and Efficient Fully-Automatic 3D Motion Correction in OCT

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Optical coherence tomography (OCT) is a micrometer-scale, volumetric imaging modality that has become a clinical standard in ophthalmology. OCT instruments image by raster-scanning a focused light spot across the retina, acquiring sequential cross-sectional images to generate volumetric data. Patient eye motion during the acquisition poses unique challenges: Non-rigid, discontinuous distortions can occur, leading to gaps in data and distorted topographic measurements. We present a new distortion model and a corresponding fully-automatic, reference-free optimization strategy for computational motion correction in orthogonally raster-scanned, retinal OCT volumes. Using a novel, domain-specific spatiotemporal parametrization of forward-warping displacements, eye motion can be corrected continuously for the first time. Parameter estimation with temporal regularization improves robustness and accuracy over previous spatial approaches. We correct each A-scan individually in 3D in a single mapping, including repeated acquisitions used in OCT angiography protocols. Specialized 3D forward image warping reduces median runtime to \({<}\)9 s, fast enough for clinical use. We present a quantitative evaluation on 18 subjects with ocular pathology and demonstrate accurate correction during microsaccades. Transverse correction is limited only by ocular tremor, whereas submicron repeatability is achieved axially (0.51 \(\upmu \)m median of medians), representing a dramatic improvement over previous work. This allows assessing longitudinal changes in focal retinal pathologies as a marker of disease progression or treatment response, and promises to enable multiple new capabilities such as supersampled/super-resolution volume reconstruction and analysis of pathological eye motion occurring in neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aganj, I., Yeo, B.T.T., Sabuncu, M.R., Fischl, B.: On removing interpolation and resampling artifacts in rigid image registration. IEEE Trans. Image Process. 22(2), 816–827 (2013). https://doi.org/10.1109/TIP.2012.2224356

    Article  MathSciNet  MATH  Google Scholar 

  2. Athwal, A., Balaratnasingam, C., Yu, D.Y., Heisler, M., Sarunic, M., Ju, M.: Optimizing 3D retinal vasculature imaging in diabetic retinopathy using registration and averaging of OCT-A. Biomed. Opt. Express 12(1), 553–570 (2021). https://doi.org/10.1364/BOE.408590

    Article  Google Scholar 

  3. Cheng, Y., Chu, Z., Wang, R.K.: Robust three-dimensional registration on optical coherence tomography angiography for speckle reduction and visualization. Quant. Imaging Med. Surg. 11(3) (2021). https://doi.org/10.21037/qims-20-751

  4. Dubose, T.B., Cunefare, D., Cole, E., Milanfar, P., Izatt, J.A., Farsiu, S.: Statistical models of signal and noise and fundamental limits of segmentation accuracy in retinal optical coherence tomography. IEEE Trans. Med. Imaging 37(9), 1978–1988 (2018). https://doi.org/10.1109/TMI.2017.2772963

    Article  Google Scholar 

  5. Farsiu, S., Robinson, M., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004). https://doi.org/10.1109/TIP.2004.834669

    Article  Google Scholar 

  6. Fletcher, W.A., Sharpe, J.A.: Saccadic eye movement dysfunction in Alzheimer’s disease. Ann. Neurol. 20(4), 464–471 (1986). https://doi.org/10.1002/ana.410200405

    Article  Google Scholar 

  7. Gitchel, G.T., Wetzel, P.A., Baron, M.S.: Pervasive ocular tremor in patients with Parkinson disease. Arch. Neurol. 69(8), 1011–1017 (2012). https://doi.org/10.1001/archneurol.2012.70

    Article  Google Scholar 

  8. Greenspan, H.: Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2008). https://doi.org/10.1093/comjnl/bxm075

    Article  Google Scholar 

  9. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

    Chapter  Google Scholar 

  10. Huang, D., et al.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991). https://doi.org/10.1126/science.1957169

    Article  Google Scholar 

  11. Kraus, M., et al.: Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization. Biomed. Opt. Express 5(8), 2591–2613 (2014). https://doi.org/10.1364/BOE.5.002591

    Article  Google Scholar 

  12. Leitgeb, R.A., Werkmeister, R.M., Blatter, C., Schmetterer, L.: Doppler optical coherence tomography. Prog. Retinal Eye Res. 41, 26–43 (2014). https://doi.org/10.1016/j.preteyeres.2014.03.004

    Article  Google Scholar 

  13. Lezama, J., Mukherjee, D., McNabb, R., Sapiro, G., Kuo, A., Farsiu, S.: Segmentation guided registration of wide field-of-view retinal optical coherence tomography volumes. Biomed. Opt. Express 7(12), 4827–4846 (2016). https://doi.org/10.1364/BOE.7.004827

    Article  Google Scholar 

  14. Makita, S., Miura, M., Azuma, S., Mino, T., Yamaguchi, T., Yasuno, Y.: Accurately motion-corrected Lissajous OCT with multi-type image registration. Biomed. Opt. Express 12(1), 637–653 (2021). https://doi.org/10.1364/BOE.409004

    Article  Google Scholar 

  15. Mallery, R.M., et al.: Visual fixation instability in multiple sclerosis measured using SLO-OCT. Invest. Ophthalmol. Vis. Sci. 59(1), 196–201 (2018). https://doi.org/10.1167/iovs.17-22391

    Article  Google Scholar 

  16. Martinez-Conde, S., Macknik, S., Hubel, D.: The role of fixational eye movements in visual perception. Nat. Rev. Neurosci. 5(3), 229–240 (2004). https://doi.org/10.1038/nrn1348

    Article  Google Scholar 

  17. Ploner, S.B., et al.: Efficient and high accuracy 3-D OCT angiography motion correction in pathology. Biomed. Opt. Express 12(1), 125–146 (2021). https://doi.org/10.1364/BOE.411117

    Article  Google Scholar 

  18. Ploner, S.B., et al.: Toward quantitative optical coherence tomography angiography. Retina 36, S118–S126 (2016). https://doi.org/10.1097/IAE.0000000000001328

    Article  Google Scholar 

  19. Schwarzhans, F., et al.: Generating large field of view en-face projection images from intra-acquisition motion compensated volumetric OCT data. Biomed. Opt. Express 11(12), 6881–6904 (2020). https://doi.org/10.1364/BOE.404738

    Article  Google Scholar 

  20. Spaide, R., Fujimoto, J., Waheed, N., Sadda, S., Staurenghi, G.: Optical coherence tomography angiography. Prog. Retinal Eye Res. 64, 1–55 (2018). https://doi.org/10.1016/j.preteyeres.2017.11.003

    Article  Google Scholar 

  21. Sánchez Brea, L., Andrade De Jesus, D., Shirazi, M.F., Pircher, M., van Walsum, T., Klein, S.: Review on retrospective procedures to correct retinal motion artefacts in OCT imaging. Appl. Sci. 9(13) (2019). https://doi.org/10.3390/app9132700

  22. Zang, P., et al.: Automated three-dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence tomography. J. Biomed. Opt. 22(2), 26001 (2017). https://doi.org/10.1117/1.JBO.22.2.026001

    Article  Google Scholar 

Download references

Acknowledgements

DFG MA 4898/12-1, NIH 5-R01-EY011289-35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ploner .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2677 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ploner, S. et al. (2022). A Spatiotemporal Model for Precise and Efficient Fully-Automatic 3D Motion Correction in OCT. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics