Skip to main content

Interpretable Differential Diagnosis for Alzheimer’s Disease and Frontotemporal Dementia

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13431))

Abstract

Alzheimer’s disease and Frontotemporal dementia are two major types of dementia. Their accurate diagnosis and differentiation is crucial for determining specific intervention and treatment. However, differential diagnosis of these two types of dementia remains difficult at the early stage of disease due to similar patterns of clinical symptoms. Therefore, the automatic classification of multiple types of dementia has an important clinical value. So far, this challenge has not been actively explored. Recent development of deep learning in the field of medical image has demonstrated high performance for various classification tasks. In this paper, we propose to take advantage of two types of biomarkers: structure grading and structure atrophy. To this end, we propose first to train a large ensemble of 3D U-Nets to locally discriminate healthy versus dementia anatomical patterns. The result of these models is an interpretable 3D grading map capable of indicating abnormal brain regions. This map can also be exploited in various classification tasks using graph convolutional neural network. Finally, we propose to combine deep grading and atrophy-based classifications to improve dementia type discrimination. The proposed framework showed competitive performance compared to state-of-the-art methods for different tasks of disease detection and differential diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://ida.loni.usc.edu/.

  2. 2.

    https://github.com/volBrain/AssemblyNet.

References

  1. Alladi, S., et al.: Focal cortical presentations of Alzheimer’s disease. Brain 130, 2636–2645 (2007)

    Article  Google Scholar 

  2. Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044 (2011)

    Article  Google Scholar 

  3. Bang, J., et al.: Frontotemporal dementia. The Lancet 386, 1672–1682 (2015)

    Article  Google Scholar 

  4. Brambati, S.M., et al.: A tensor based morphometry study of longitudinal gray matter contraction in FTD. Neuroimage 35, 998–1003 (2007)

    Article  Google Scholar 

  5. Bron, E.E., et al.: Multiparametric computer-aided differential diagnosis of Alzheimer’s disease and frontotemporal dementia using structural and advanced MRI. Eur. Radiol. 27, 3372–3382 (2017)

    Article  Google Scholar 

  6. Coupé, P., et al.: Lifespan changes of the hum brain in Alzheimer’s disease. Sci. Rep. 9, 3998 (2019)

    Article  Google Scholar 

  7. Coupé, P., et al.: AssemblyNet: a large ensemble of CNNs for 3D whole brain MRI segmentation. Neuroimage 219, 117026 (2020)

    Article  Google Scholar 

  8. Davatzikos, C., et al.: Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41, 1220–1227 (2008)

    Article  Google Scholar 

  9. Du, A.T., et al.: Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130, 1159–1166 (2006)

    Article  Google Scholar 

  10. Ellis, K.A., et al.: The Australi Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21, 672–687 (2009)

    Article  Google Scholar 

  11. Frisoni, G.B., et al.: The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 6, 67–77 (2010)

    Article  Google Scholar 

  12. Harper, L., et al.: An algorithmic approach to structural imaging in dementia. J. Neurol. Neurosurg. Psychiatry 85, 692–698 (2014)

    Article  Google Scholar 

  13. Hu, J., et al.: Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer’s disease. Front. Neurosci. 14, 626154 (2021)

    Article  Google Scholar 

  14. Hutchinson, A.D., et al.: Neuropsychological deficits in frontotemporal dementia and Alzheimer’s disease: a meta-analytic review. J. Neurol. Neurosurg. Psychiatry 78, 917–928 (2007)

    Article  Google Scholar 

  15. Jack, C.R., et al.: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27, 685–691 (2008)

    Article  Google Scholar 

  16. de Jong, L.W., et al.: Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131, 3277–3285 (2008)

    Article  Google Scholar 

  17. Kesslak, J.P., et al.: Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 41, 51–54 (1991)

    Article  Google Scholar 

  18. Kim, J.P., et al.: Machine learning based hierarchical classification of frontotemporal dementia and Alzheimer’s disease. NeuroImage Clin. 23, 101811 (2019)

    Google Scholar 

  19. Kipf, T.N., et al.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017 (2017)

    Google Scholar 

  20. LaMontagne, P.J., et al.: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease. Radiol. Imaging (2019)

    Google Scholar 

  21. Lebedeva, A.K., et al.: MRI-based classification models in prediction of mild cognitive impairment and dementia in late-life depression. Front. Aging Neurosci. 9, 13 (2017)

    Article  Google Scholar 

  22. Ma, D., et al.: Differential diagnosis of frontotemporal dementia, Alzheimer’s disease, and normal aging using a multi-scale multi-type feature generative adversarial deep neural network on structural magnetic resonance images. Front. Neurosci. 14, 853 (2020)

    Article  Google Scholar 

  23. Malone, I.B., et al.: MIRIAD-public release of a multiple time point Alzheimer’s MR imaging dataset. Neuroimage 70, 33–36 (2013)

    Article  Google Scholar 

  24. Manjón, J.V., et al.: Robust MRI brain tissue parameter estimation by multistage outlier rejection. Magn. Reson. Med. 59, 866–873 (2008)

    Article  Google Scholar 

  25. Manjón, J.V., et al.: Adaptive non-local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31, 192–203 (2010)

    Article  Google Scholar 

  26. Manjón, J.V., et al.: Nonlocal intracranial cavity extraction. Int. J. Biomed. Imaging 2014, 820205 (2014)

    Article  Google Scholar 

  27. McKhann, G.M., et al.: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 263–269 (2011)

    Article  Google Scholar 

  28. Möller, C., et al.: Alzheimer disease and behavioral variant frontotemporal dementia: automatic classification based on cortical atrophy for single-subject diagnosis. Radiology 279, 838–848 (2016)

    Article  Google Scholar 

  29. Neary, D., et al.: Frontotemporal dementia. Lancet Neurol. 4, 771–780 (2005)

    Article  Google Scholar 

  30. Nguyen, H.D., et al.: Deep grading based on collective artificial intelligence for AD diagnosis and prognosis. In: Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data, vol. 12929, pp. 24–33 (2021)

    Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Rabinovici, G., et al.: Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am. J. Alzheimer’s Dis. Other Dement. 22, 474–488 (2008)

    Article  Google Scholar 

  33. Rascovsky, K., et al.: Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011)

    Article  Google Scholar 

  34. Rosen, H.J., et al.: Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58, 198–208 (2002)

    Article  Google Scholar 

  35. Rosen, H.J., et al.: Neuroanatomical correlates of behavioural disorders in dementia. Brain 128, 2612–2625 (2005)

    Article  Google Scholar 

  36. Schuff, N., et al.: MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 132, 1067–1077 (2009)

    Article  Google Scholar 

  37. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)

    Article  Google Scholar 

  38. Whitehouse, P., et al.: Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982)

    Article  Google Scholar 

  39. Wong, S., et al.: Contrasting prefrontal cortex contributions to episodic memory dysfunction in behavioural variant frontotemporal dementia and Alzheimer’s disease. PLoS ONE 9, e87778 (2014)

    Article  Google Scholar 

  40. Yew, B., et al.: Lost and forgotten? Orientation versus memory in Alzheimer’s disease and frontotemporal dementia. J. Alzheimer’s Dis. JAD 33, 473–481 (2013)

    Article  Google Scholar 

  41. Yu, Q., et al.: An MRI-based strategy for differentiation of frontotemporal dementia and Alzheimer’s disease. Alzheimer’s Res. Therapy 13, 23 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This work benefited from the support of the project DeepvolBrain of the French National Research Agency (ANR-18-CE45-0013). This study was achieved within the context of the Laboratory of Excellence TRAIL ANR-10-LABX-57 for the BigDataBrain project. Moreover, we thank the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02 and RRI “IMPACT”), the French Ministry of Education and Research, and the CNRS for DeepMultiBrain project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy-Dung Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, HD., Clément, M., Mansencal, B., Coupé, P. (2022). Interpretable Differential Diagnosis for Alzheimer’s Disease and Frontotemporal Dementia. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics