Skip to main content

Abstract

Cognitive intelligence-enabled manufacturing (CoIM) uses machines to utilize technologies that mimic human cognitive abilities to solve complex problems in manufacturing. With the support of a cognitive intelligence-enabled manufacturing system (CoIMS) architecture, information flow is organized and coordinated appropriately, starting from the machine sensory system, central system to the motor system. Machine perceptive abilities monitor, sense and capture equipment performance, aggregate data, and help gain valuable insights into the production process. It uses the industrial internet of things, data analytics, artificial intelligence and related techniques and cognitive computing and related technologies to address production issues in an autonomous manner. As such, CoIMS solves complex production problems. It also transforms manufacturing by improving product quality, productivity, and safety, reducing costs and downtimes, identifying knowledge gaps, and enhancing customer experience. Even so, a CoIMS is not responsible for making the final decision. Instead, it supplements information on the fly for engineers to take necessary actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., Tao, F., Cheng, Y., Zhao, L.: Big data in product lifecycle management. Int. J. Adv. Manuf. Technol. 81(1), 667–684 (2015)

    Article  Google Scholar 

  2. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

    Article  Google Scholar 

  3. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12(1), 161–166 (2011)

    Google Scholar 

  4. Strube, G.: Cognitive SCIENCE: OVERVIEW. In: Smelser, N.J., Baltes, P.B. (eds.) International Encyclopedia of the Social and Behavioral Sciences, pp. 2158–2166. Elsevier, Amsterdam (2001)

    Google Scholar 

  5. Stillings, N.A., Chase, C.H., Weisler, S.E., Feinstein, M.H., Garfield, J.L., Rissland, E.L.: Cognitive Science: An Introduction, 2nd edn. MIT Press, Massachusetts (1995)

    Google Scholar 

  6. Tesla. https://twitter.com/Tesla/status/1125465424529887232. Accessed 09 Feb 2022

  7. Simon, H.A.: The human mind: the symbolic level. Proc. Am. Phil. Soc. 137(4), 638–647 (1993)

    Google Scholar 

  8. Levitin, D.J.: Foundations of Cognitive Psychology: Core Readings. MIT Press, London (2002)

    Book  Google Scholar 

  9. Klette, R.: Concise Computer Vision. Springer, London (2014)

    Book  Google Scholar 

  10. Wang, W.: Machine Audition: Principles, Algorithms, and Systems: Principles, Algorithms, and Systems. IGI Global, Hershey (2010)

    Google Scholar 

  11. Haddad, R., Medhanie, A., Roth, Y., Harel, D., Sobel, N.: Predicting odor pleasantness with an electronic nose. PLoS Comput. Biol. 6(4), e100740 (2010)

    Google Scholar 

  12. Fleer, S., Moringen, A., Klatzky, R.L., Ritter, H.: Learning efficient haptic shape exploration with a rigid tactile sensor array. PloS One 15(1), e0226880 (2020)

    Google Scholar 

  13. Greeno, J.G., Collins, A.M., Resnick, L.B.: Cognition and learning. In: Berliner, D., Calfee, R. (eds.) Handbook of Educational Psychology, pp. 15–46. MacMillan, New York (1996)

    Google Scholar 

  14. Hogan, A., et al.: Knowledge graphs. Synth. Lect. Data Semant .Knowl. 12, 1–257 (2021)

    Google Scholar 

  15. Torrey, L., Shavlik, J.: In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI Global (2010)

    Google Scholar 

  16. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

    Article  Google Scholar 

  17. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  18. Wang, H.N., et al.: Deep reinforcement learning: a survey. Front. Inf. Technol. Electron. Eng. 21(12), 1726–1744 (2020)

    Article  Google Scholar 

  19. Li, Y.: Deep reinforcement learning: an overview. arXiv preprint arXiv:1701.07274 (2017)

  20. Livingston, J.A.: metacognition: an overview. U.S. Department of Education, pp. 1–9 (2003)

    Google Scholar 

  21. Wiering, M.A., Van Otterlo, M.: Reinforcement learning. Adapt. Learn. Optim. 12(3), 729 (2012)

    Google Scholar 

  22. Zheng, P., Xia, L., Li, C., Li, X., Liu, B.: Towards self-X cognitive manufacturing network: an industrial knowledge graph-based multi-agent reinforcement learning approach. J. Manuf. Syst. 61, 16–26 (2021)

    Article  Google Scholar 

  23. Zheng, P., Li, S., Xia, L., Wang, L., Nassehi, A.: A visual reasoning-based approach for mutual-cognitive human-robot collaboration. Cirp Ann. Manuf. Technol. (2022)

    Google Scholar 

  24. Woolfe, T.: Cognitive Manufacturing in Action - IBM Watson IoT. https://www.youtube.com/watch?v=f3WB2e3vXWQ&t=438s&ab_channel=TobyWoolfe. Accessed 03 Mar 2022

  25. Al Faruque, M.A., Muthirayan, D., Yu, S.Y., Khargonekar, P.P.: Cognitive digital twin for manufacturing systems. In: 2021 Design, Automation & Test in Europe Conference & Exhibition, pp. 440–445. IEEE (2021)

    Google Scholar 

  26. Mourtzis, D.: Towards the 5th industrial revolution: a literature review and a framework for process optimization based on big data analytics and semantics. J. Mach. Eng. 21(3), 5–39 (2021)

    Google Scholar 

  27. Zheng, X., Lu, J., Kiritsis, D.: The emergence of cognitive digital twin: vision, challenges and opportunities. Int. J. Prod. Res., 1–23 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agbozo, R.S.K., Zheng, P., Peng, T., Tang, R. (2022). Towards Cognitive Intelligence-Enabled Manufacturing. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology, vol 664. Springer, Cham. https://doi.org/10.1007/978-3-031-16411-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16411-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16410-1

  • Online ISBN: 978-3-031-16411-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics