Skip to main content

A Procedural Method to Build Decision Support Systems for Effective Interventions in Manufacturing – A Predictive Maintenance Example from the Spring Industry

  • Conference paper
  • First Online:
Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action (APMS 2022)

Abstract

Predictive maintenance as one of the most prominent data-driven approaches enables companies to not only maximize the reliability of production processes but also to improve their efficiency. This is especially valuable in today’s volatile environment. Nevertheless, companies still struggle to implement digital technologies to track and improve their manufacturing processes, which includes data driven decision support systems. Based on practitioner interviews we identified the lack of guidance as a root cause. Additionally, literature reveals a shortcoming of methods especially suited for the needs of the manufacturing industry. This study contributes to this field by answering the question of how a procedural method can look like to guide practitioners to build decision support systems for effective interventions in manufacturing. Applying a design science research approach, the manuscript presents a seven-step procedural method to build decision support systems in manufacturing. The approach was designed and field tested at the example of a predictive maintenance model for a spring production process. The findings indicate that the incorporation of all stakeholders and the uncovering and use of implicit process knowledge in humans is of utmost importance for success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monostori, J.: Supply chains robustness: challenges and opportunities. Procedia CIRP 67, 110–115 (2018)

    Article  Google Scholar 

  2. Bernard, G., Luban, K., Hänggi, R.: Resilienz in der Theorie. In: Luban, K., Hänggi, R. (eds.) Erfolgreiche Unternehmensführung durch Resilienzmanagement. Springer, Heidelberg (2022)

    Google Scholar 

  3. Heil, M.: Entstörung betrieblicher Abläufe (1995)

    Google Scholar 

  4. Peukert, S., Lohmann, J., Haefner, B., Lanza, G.: Towards increasing robustness in global production networks by means of an integrated disruption management. Procedia CIRP 93, 706–711 (2020)

    Article  Google Scholar 

  5. Arena, S., Florian, E., Zennaro, I., Orrù, P.F., Sgarbossa, F.: A novel decision support system for managing predictive maintenance strategies based on machine learning approaches. Saf. Sci. 146, 105529 (2022)

    Article  Google Scholar 

  6. Gao, R., et al.: Cloud-enabled prognosis for manufacturing. CIRP Ann. 64(2), 749–772 (2015)

    Article  Google Scholar 

  7. Matyas, K., Nemeth, T., Kovacs, K., Glawar, R.: A procedural approach for realizing prescriptive maintenance planning in manufacturing industries. CIRP Ann. 66(1), 461–464 (2017)

    Article  Google Scholar 

  8. Bunzel, M.: As much as half of every dollar you spend on preventive maintenance is wasted. IBM, 4 May 2016

    Google Scholar 

  9. Zonta, T., da Costa, C.A., da Rosa Righi, R., de Lima, M.J., da Trindade, E.S., Li, G.P.: Predictive maintenance in the Industry 4.0: a systematic literature review. Comput. Ind. Eng. 150, 106889 (2020)

    Google Scholar 

  10. Mobley, R.K.: An Introduction to Predictive Maintenance. Elsevier, Amsterdam (2002)

    Google Scholar 

  11. Coleman, C., Damodaran, S., Deuel, E.: Predictive maintenance and the smart factory: predictive maintenance connects machines to reliability professionals through the power of the smart factory, Deloitte Consulting LLP (2017)

    Google Scholar 

  12. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19(2), 4 (2007)

    Google Scholar 

  13. Steinhoff, C.: Aktueller Begriff Industrie 4.0, Wissenschaftliche Dienste (2016)

    Google Scholar 

  14. Babel, W.: Industrie 4.0, China 2025, IoT. Springer Fachmedien Wiesbaden, Wiesbaden (2021)

    Google Scholar 

  15. Thoben, K.-D., Wiesner, S., Wuest, T.: “Industrie 4.0” and smart manufacturing – a review of research issues and application examples. Int. J. Autom. Technol. 11(1), 4–16 (2017)

    Article  Google Scholar 

  16. Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48, 157–169 (2018)

    Article  Google Scholar 

  17. Kang, H.S., et al.: Smart manufacturing: past research, present findings, and future directions. Int. J. Precis. Eng. Manuf.-Green Technol. 3(1), 111–128 (2016). https://doi.org/10.1007/s40684-016-0015-5

    Article  Google Scholar 

  18. Kletti, J.: MES - Manufacturing Execution System. Springer, Heidelberg (2015)

    Google Scholar 

  19. O’Donovan, P., Leahy, K., Bruton, K., O’Sullivan, D.T.J.: An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities. J. Big Data 2(1), 1–26 (2015). https://doi.org/10.1186/s40537-015-0034-z

    Article  Google Scholar 

  20. Shuradze, G., Wagner, H.-T.: Towards a conceptualization of data analytics capabilities. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 05 January 2016–08 January 2016. IEEE (2016)

    Google Scholar 

  21. Shao, G., Shin, S.-J., Jain, S.: Data analytics using simulation for smart manufacturing. In: Proceedings of the Winter Simulation Conference 2014, 2014 Winter Simulation Conference - (WSC 2014), Savanah, GA, USA, 07 December 2014–10 December 2014. IEEE (2014)

    Google Scholar 

  22. Banerjee, A., Bandyopadhyay, T., Acharya, P.: Data analytics: hyped up aspirations or true potential? Vikalpa J. Decis. Mak. 38(4), 1–12 (2013)

    Google Scholar 

  23. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 3(17), 37 (1996)

    Google Scholar 

  24. Dutta, D., Bose, I.: Managing a big data project: the case of Ramco cements limited. Int. J. Prod. Econ. 165, 293–306 (2015)

    Article  Google Scholar 

  25. Shaerer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehous. 5(4), 13–22 (2000)

    Google Scholar 

  26. Köhler, M., Frank, D., Schmitt, R.: Six Sigma. In: Pfeifer, T., Schmitt, R. (eds.) Masing Handbuch Qualitätsmanagement. Hanser, München (2014)

    Google Scholar 

  27. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35(2), 137–144 (2015)

    Article  Google Scholar 

  28. Hu, H., Wen, Y., Chua, T.-S., Li, X.: Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2, 652–687 (2014)

    Article  Google Scholar 

  29. Angée, S., Lozano-Argel, S.I., Montoya-Munera, E.N., Ospina-Arango, J.-D., Tabares-Betancur, M.S.: Towards an improved ASUM-DM process methodology for cross-disciplinary multi-organization big data & analytics projects. In: Uden, L., Hadzima, B., Ting, I.-H. (eds.) Knowledge Management in Organizations, vol. 877. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95204-8_51

  30. Mockenhaupt, A.: Datengetriebene Prozessanalyse. In: Mockenhaupt, A. (ed.) Digitalisierung und Künstliche Intelligenz in der Produktion. Springer Fachmedien Wiesbaden, Wiesbaden (2021)

    Google Scholar 

  31. Miller, H.G., Mork, P.: From data to decisions: a value chain for big data. IT Prof. 15(1), 57–59 (2013)

    Google Scholar 

  32. Vera-Baquero, A., Colomo-Palacios, R., Molloy, O.: Business process analytics using a big data approach. IT Prof. 15(6), 29–35 (2013)

    Google Scholar 

  33. Zou, H., Yu, Y., Tang, W., Chen, H.-W.M.: FlexAnalytics: a flexible data analytics framework for big data applications with I/O performance improvement. Big Data Res. 1, 4–13 (2014)

    Article  Google Scholar 

  34. Schröer, C., Kruse, F., Gómez, J.M.: A systematic literature review on applying CRISP-DM process model. Procedia Comput. Sci. 181, 526–534 (2021)

    Article  Google Scholar 

  35. Schäfer, F., Zeiselmair, C., Becker, J., Otten, H.: Synthesizing CRISP-DM and quality management: a data mining approach for production processes. In: 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), Marrakech, Morocco, 21 November 2018–23 November 2018. IEEE (2018)

    Google Scholar 

  36. Greiffenberg, S.: Methoden als Theorien der Wirtschaftsinformatik. In: Uhr, W., Esswein, W., Schoop, E. (eds.) Wirtschaftsinformatik 2003/Band II: Medien - Märkte - Mobilität, s. l. Physica-Verlag HD, Heidelberg (2003)

    Google Scholar 

  37. Brenner, W., van Giffen, B., Koehler, J., Fahse, T., Sagodi, A.: Stand in Wissenschaft und Praxis. In: Brenner, W., van Giffen, B., Koehler, J., Fahse, T., Sagodi, A. (eds.) Bausteine eines Managements Künstlicher Intelligenz. Springer Fachmedien Wiesbaden, Wiesbaden (2021)

    Google Scholar 

  38. Nunes, D.S., Zhang, P., Sa Silva, J.: A survey on human-in-the-loop applications towards an internet of all. IEEE Commun. Surv. Tutor. 17(2), 944–965 (2015)

    Google Scholar 

  39. Cimini, C., Pirola, F., Pinto, R., Cavalieri, S.: A human-in-the-loop manufacturing control architecture for the next generation of production systems. J. Manuf. Syst. 54, 258–271 (2020)

    Article  Google Scholar 

  40. Winter, R., Aier, S.: Design science research in business innovation. In: Hoffmann, C.P., Lennerts, S., Schmitz, C., Stölzle, W., Uebernickel, F. (eds.) Business Innovation: Das St. Galler Modell. BIUSG, pp. 475–498. Springer, Wiesbaden (2016). https://doi.org/10.1007/978-3-658-07167-7_25

    Chapter  Google Scholar 

  41. Dresch, A., Lacerda, D.P., Antunes Jr, J.A.V.: Design Science Research. Springer, Cham (2015)

    Google Scholar 

  42. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37(2), 337–355 (2013)

    Article  Google Scholar 

  43. Winter, R.: Design science research in Europe. Eur. J. Inf. Syst. 17(5), 470–475 (2008)

    Article  Google Scholar 

  44. van Aken, J., Chandrasekaram, A., Halman, J.: Conducting and publishing design science research. J. Oper. Manage. 47, 1–8 (2018)

    Google Scholar 

  45. March, S.T., Smith, G.F.: Design and natural science research on information technology. Decis. Support Syst. 15(4), 251–266 (1995)

    Article  Google Scholar 

  46. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75 (2004)

    Article  Google Scholar 

  47. Hjalmarsson, A., Rudmark, D., Lind, M.: When designers are not in control – experiences from using action research to improve researcher-developer collaboration in design science research. In: Winter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13335-0_1

    Chapter  Google Scholar 

  48. Cahenzli, M., Deitermann, F., Aier, S., Haki, K., Budde, L.: Intra-organizational nudging: designing a label for governing local decision-making. In: itAIS2021: XVIII Conference of the Italian Chapter of AIS - Digital Resilience and Sustainability: People, Organizations, and Society, Trento, Italy (2021)

    Google Scholar 

  49. Schmidt, B., Wang, L.: Cloud-enhanced predictive maintenance. Int. J. Adv. Manuf. Technol. 99(1–4), 5–13 (2016). https://doi.org/10.1007/s00170-016-8983-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinand Deitermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deitermann, F., Budde, L., Friedli, T., Hänggi, R. (2022). A Procedural Method to Build Decision Support Systems for Effective Interventions in Manufacturing – A Predictive Maintenance Example from the Spring Industry. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-031-16407-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16407-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16406-4

  • Online ISBN: 978-3-031-16407-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics