Skip to main content

End-to-End Statistical Model Checking for Parametric ODE Models

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2022)

Abstract

We propose a simulation-based technique for the verification of structural parameters in Ordinary Differential Equations. This technique is an adaptation of Statistical Model Checking, often used to verify the validity of biological models, to the setting of Ordinary Differential Equations systems. The aim of our technique is to search the parameter space for the parameter values that induce solutions that best fit experimental data under variability, with any metrics of choice. To do so, we discretize the parameter space and use statistical model checking to grade each individual parameter value w.r.t experimental data. Contrary to other existing methods, we provide statistical guarantees regarding our results that take into account the unavoidable approximation errors introduced through the numerical resolution of the ODE system performed while simulating. In order to show the potential of our technique, we present its application to two case studies taken from the literature, one relative to the growth of a jellyfish population, and another concerning a prey-predator model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the method does not depend on the value of \(\delta \). We assume its value is provided by the user.

  2. 2.

    See Eq. (27) in Appendix B.

  3. 3.

    See Remark 2 in Appendix A, and [16].

References

  1. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28

    Chapter  MATH  Google Scholar 

  2. Bao, R., Attiogbe, C., Delahaye, B., Fournier, P., Lime, D.: Parametric statistical model checking of UAV flight plan. In: Pérez, J.A., Yoshida, N. (eds.) FORTE 2019. LNCS, vol. 11535, pp. 57–74. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21759-4_4

    Chapter  Google Scholar 

  3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 3rd edn. Wiley, Hoboken (2016). https://doi.org/10.1002/9781119121534

    Book  MATH  Google Scholar 

  4. Crouzeix, M., Mignot, A.L.: Analyse numérique des équations différentielles, vol. 1. Masson (1984)

    Google Scholar 

  5. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21

    Chapter  MATH  Google Scholar 

  6. Dehnert, C., et al.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13

    Chapter  Google Scholar 

  7. Demailly, J.: Analyse numérique et équations différentielles. Grenoble Sciences, EDP Sciences (2012)

    Google Scholar 

  8. Dunford, N., Schwartz, J.: Linear Operators. 1. General Theory. A Wiley Interscience Publication. Interscience Publishers (1967)

    Google Scholar 

  9. Gainer, P., Hahn, E.M., Schewe, S.: Accelerated model checking of parametric Markov chains. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 300–316. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_18

    Chapter  Google Scholar 

  10. Gyori, B.M., Liu, B., Paul, S., Ramanathan, R., Thiagarajan, P.S.: Approximate probabilistic verification of hybrid systems. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 96–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26916-0_6

    Chapter  MATH  Google Scholar 

  11. Han, T., Katoen, J.P., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: 2008 Real-Time Systems Symposium, pp. 173–182. IEEE (2008). https://doi.org/10.1109/RTSS.2008.19

  12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963). https://doi.org/10.1080/01621459.1963.10500830

    Article  MathSciNet  MATH  Google Scholar 

  13. Katoen, J.P.: The probabilistic model checking landscape. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 31–45 (2016). https://doi.org/10.1145/2933575.2934574

  14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_11

    Chapter  Google Scholar 

  15. Liu, B., Gyori, B.M., Thiagarajan, P.S.: Statistical model checking-based analysis of biological networks. In: Liò, P., Zuliani, P. (eds.) Automated Reasoning for Systems Biology and Medicine. CB, vol. 30, pp. 63–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17297-8_3. https://doi.org/10.48550/arXiv.1812.01091

  16. Lotkin, M.: On the accuracy of Runge-Kutta’s method. Math. Tables Other Aids Comput. 5(35), 128–133 (1951). https://doi.org/10.1090/S0025-5718-1951-0043566-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Melica, V., Invernizzi, S., Caristi, G.: Logistic density-dependent growth of an Aurelia aurita polyps population. Ecol. Model. 291, 1–5 (2014). https://doi.org/10.1016/j.ecolmodel.2014.07.009

    Article  Google Scholar 

  18. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, Springer, New York (2013). https://doi.org/10.1007/978-1-4613-0003-8

    Book  MATH  Google Scholar 

  19. Petrov, V.V.: Sums of Independent Random Variables. De Gruyter (2022). https://doi.org/10.1515/9783112573006

  20. Ramondenc, S., Eveillard, D., Guidi, L., Lombard, F., Delahaye, B.: Probabilistic modeling to estimate jellyfish ecophysiological properties and size distributions. Sci. Rep. 10(1), 1–13 (2020). https://doi.org/10.1038/s41598-020-62357-5

    Article  Google Scholar 

  21. Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 69(5), 741–796 (2007). https://doi.org/10.1111/j.1467-9868.2007.00610.x

    Article  MathSciNet  MATH  Google Scholar 

  22. Restrepo, J.G., Sánchez, C.M.V.: Parameter estimation of a predator-prey model using a genetic algorithm. In: 2010 IEEE ANDESCON, pp. 1–4, September 2010. https://doi.org/10.1109/ANDESCON.2010.5633365

  23. Vandermeer, J.H., Goldberg, D.E.: Population ecology. In: Population Ecology. Princeton University Press (2013)

    Google Scholar 

  24. Varah, J.M.: A spline least squares method for numerical parameter estimation in differential equations. SIAM J. Sci. Stat. Comput. 3(1), 28–46 (1982). https://doi.org/10.1137/0903003

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Delahaye .

Editor information

Editors and Affiliations

Appendices

Appendices

In these appendices, we provide the complete proofs of Lemma 1 and Theorem 2.

A Proof of Lemma 1

First, we recall the definition of stability of an approximation method.

Definition 2 (Method stability)

We say that the approximation method determined by Eq. (7) is stable if there exists a constant \(\mathcal {K}> 0\), called stability constant, such that, for any two sequences \((y_k)_{0 \le k \le J}\) and \((\widetilde{y}_k)_{0 \le k \le J}\) defined as \(y_{k+1} = y_k + h \, \varPhi (\tau _k, y_k, {\boldsymbol{\lambda }}, h)\) and \(\widetilde{y}_{k+1} = \widetilde{y}_k + h \,\varPhi (\tau _k, \widetilde{y}_k, {\boldsymbol{\lambda }}, h ) + \eta _k\) respectively, (\(0 \le k < J\)), with \({\boldsymbol{\lambda }}\in \textbf{W}\) and \(\eta _k \in \mathbb {R}\), we have

$$\begin{aligned} \max _{0 \le k \le J} |y_{k} - \widetilde{y}_k| \le \mathcal {K}\big (|y_0 - \widetilde{y}_0| + \sum _{0 \le k \le J} |\eta _k| \big ). \end{aligned}$$
(22)

It is well-known that if \(\varPhi \) is \(\kappa \)-Lipschitz w.r.t. y, i.e. \(\forall t \in [0,T]\), \(\forall y, \widetilde{y} \in \mathbb {R}\), \(\forall {\boldsymbol{\lambda }}\in \textbf{W}\) and \(\forall h \in \mathbb {R}\), \(\left| \varPhi (t, y, {\boldsymbol{\lambda }}, h) - \varPhi (t, \widetilde{y}, {\boldsymbol{\lambda }}, h)\right| \le \kappa \left| y - y_2\right| \), then stability is ensured (see for instance [3] or [4]).

Now, we fix \({\boldsymbol{\lambda }}^* \in \textbf{W}\) and \({\boldsymbol{\lambda }}_1, {\boldsymbol{\lambda }}_2 \in \mathcal {B}_{{\boldsymbol{\lambda }}^*}\), and we consider the approximate solutions \(y^{{\boldsymbol{\lambda }}_1},y^{{\boldsymbol{\lambda }}_2}\) to Eq. (1) relative to \({\boldsymbol{\lambda }}_1\) and \({\boldsymbol{\lambda }}_2\) and starting from \(z_0\).

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} y_0^{{\boldsymbol{\lambda }}_1} &{}= z_0,\\ y_{k+1}^{{\boldsymbol{\lambda }}_1} &{}= y_k^{{\boldsymbol{\lambda }}_1} + h\, \varPhi (t_k, y_k^{{\boldsymbol{\lambda }}_1}, {\boldsymbol{\lambda }}_1, h),\\ \end{array}\right. } {\left\{ \begin{array}{ll} y_0^{{\boldsymbol{\lambda }}_2} &{}= z_0,\\ y_{k+1}^{{\boldsymbol{\lambda }}_2} &{}= \widetilde{y}_k + h\, \varPhi (t_k, y_k^{{\boldsymbol{\lambda }}_2}, {\boldsymbol{\lambda }}_2, h).\\ \end{array}\right. } \end{aligned} \end{aligned}$$

We recall that the exact solutions to Eq. (1) relative to \({\boldsymbol{\lambda }}_1\) and \({\boldsymbol{\lambda }}_2\) and starting from \(z_0\) are denoted \(z^{{\boldsymbol{\lambda }}_1}\) and \(z^{{\boldsymbol{\lambda }}_2}\) respectively. For \(i \in \lbrace 1, 2 \rbrace \) and \(0 \le k \le J\), we introduce the consistency error on \(y^{{\boldsymbol{\lambda }}_i}\) at step k:

$$\begin{aligned} \epsilon _{h, k}({\boldsymbol{\lambda }}_i) = |z^{{\boldsymbol{\lambda }}_i}(\tau _k) - y^{{\boldsymbol{\lambda }}_i}(\tau _k)|. \end{aligned}$$
(23)

The consistency errors satisfy \(\epsilon _h({\boldsymbol{\lambda }}_i) = \max _{0 \le k \le J} \epsilon _{h, k}({\boldsymbol{\lambda }}_i)\), for \(i \in \lbrace 1, 2 \rbrace \), where \(\epsilon _h({\boldsymbol{\lambda }}_i)\) is the global approximation error (defined by Eq. (10)). The proof of Lemma 1 can be derived from the following theorem.

Theorem 3 (Stability with respect to consistency error)

Assume that the function \(\varPhi \) defined in Eq. (7) is \(\kappa _1\)-Lipschitz w.r.t. \({\boldsymbol{\lambda }}\) and \(\kappa _2\)-Lipschitz continuous w.r.t. y. Then the approximation method is stable w.r.t. the consistency error, i.e. there exists \(\mathcal {K}> 0\) such that

$$\begin{aligned} \forall {\boldsymbol{\lambda }}_1, {\boldsymbol{\lambda }}_2 \in \mathcal {B}_{{\boldsymbol{\lambda }}^*}, \max _{0 \le k \le J} |\epsilon _{h,k}({\boldsymbol{\lambda }}_1) - \epsilon _{h,k}({\boldsymbol{\lambda }}_2)| \le \mathcal {K}\Vert {\boldsymbol{\lambda }}_1 - {\boldsymbol{\lambda }}_2\Vert , \end{aligned}$$
(24)

where \(\Vert \cdot \Vert \) is the Euclidean norm defined in Sect. 2.1.

Proof

(of Theorem 3). By assumption, \(\varPhi \) is \(\kappa _1\)-Lipschitz continuous w.r.t. \({\boldsymbol{\lambda }}\):

$$\begin{aligned} \forall t, y, h \in \mathbb {R}, \forall {\boldsymbol{\lambda }}_1, {\boldsymbol{\lambda }}_2 \in \mathcal {B}_{{\boldsymbol{\lambda }}^*}, \left| \varPhi (t, y, {\boldsymbol{\lambda }}_1, h) - \varPhi (t, y, {\boldsymbol{\lambda }}_2, h)\right| \le \kappa _1 \left| {\boldsymbol{\lambda }}_1 - {\boldsymbol{\lambda }}_2 \right| . \end{aligned}$$

It follows that

$$\begin{aligned} \begin{aligned} |y_{k+1}^{{\boldsymbol{\lambda }}_1} - y_{k+1}^{{\boldsymbol{\lambda }}_2}|&\le |y_k^{{\boldsymbol{\lambda }}_1} - y_k^{{\boldsymbol{\lambda }}_2}| + h|\varPhi (t_k, y_k^{{\boldsymbol{\lambda }}_1}, {\boldsymbol{\lambda }}_1, h) - \varPhi (t_k, y_k^{{\boldsymbol{\lambda }}_2}, {\boldsymbol{\lambda }}_2, h)|\\&\le |y_k^{{\boldsymbol{\lambda }}_1} - y_k^{{\boldsymbol{\lambda }}_2}| + h|\varPhi (t_k, y_k^{{\boldsymbol{\lambda }}_1},{\boldsymbol{\lambda }}_1, h) - \varPhi (t_k, y_k^{{\boldsymbol{\lambda }}_1}, {\boldsymbol{\lambda }}_2, h)|\\&\quad + h|\varPhi (t_k, y_k^{{\boldsymbol{\lambda }}_1}, {\boldsymbol{\lambda }}_2, h) - \varPhi (t_k, y_k^{{\boldsymbol{\lambda }}_2},{\boldsymbol{\lambda }}_2, h)|\\&\le (1+h\kappa _2)|y_k^{{\boldsymbol{\lambda }}_1} - y_k^{{\boldsymbol{\lambda }}_2}| + h\kappa _1\Vert {\boldsymbol{\lambda }}_1 - {\boldsymbol{\lambda }}_2\Vert ,\\ \end{aligned} \end{aligned}$$

for \(0 \le k \le J\). We write \(|y_k^{{\boldsymbol{\lambda }}_1} - y_k^{{\boldsymbol{\lambda }}_2}| = \varDelta _{y,k}\) and \(\Vert {\boldsymbol{\lambda }}_1 - {\boldsymbol{\lambda }}_2\Vert = \varDelta _{{\boldsymbol{\lambda }}}\), and we get

$$\begin{aligned} \varDelta _{y,k+1} \le (1+h\kappa _2)\varDelta _{y,k} + h\kappa _1 \varDelta _{{\boldsymbol{\lambda }}}. \end{aligned}$$
(25)

Applying the discrete Gronwall lemma (see for instance [7], VIII.2.3), we deduce

$$\begin{aligned} \max _{0 \le k \le J} \varDelta _{y,k} \le e^{\kappa _2T} \big (\varDelta _{y,0} + \sum _{0 \le j \le k-1} h\kappa _1\varDelta _{{\boldsymbol{\lambda }}} \big ) \end{aligned}$$

which leads to

$$\begin{aligned} \max _{0 \le k \le J} |y_k^{{\boldsymbol{\lambda }}_1} - y_k^{{\boldsymbol{\lambda }}_2}| \le e^{\kappa _2T} T\kappa _1 \Vert {\boldsymbol{\lambda }}_1 - {\boldsymbol{\lambda }}_2\Vert , \end{aligned}$$

since \(y_0^{{\boldsymbol{\lambda }}_1} = y_0^{{\boldsymbol{\lambda }}_2} = z_0\) and \(h\,J = T\).

Furthermore, it is proved in [4] that if \(\varPhi \) is Lipschitz continuous w.r.t. \({\boldsymbol{\lambda }}\), then the exact solution \(z_{{\boldsymbol{\lambda }}}\) is also Lipschitz continuous w.r.t. \({\boldsymbol{\lambda }}\) that is, there exists \(\kappa _3 > 0\) such that

$$\begin{aligned} \forall {\boldsymbol{\lambda }}_1,{\boldsymbol{\lambda }}_2 \in \mathcal {B}_{{\boldsymbol{\lambda }}^*}, \forall t \in [0,T], |z^{{\boldsymbol{\lambda }}_1}(t) - z^{{\boldsymbol{\lambda }}_2}(t)| \le \kappa _3 \Vert {\boldsymbol{\lambda }}_1 - {\boldsymbol{\lambda }}_2\Vert . \end{aligned}$$
(26)

Finally, we have

$$\begin{aligned} \begin{aligned} |\epsilon _{h, k}({\boldsymbol{\lambda }}_1) - \epsilon _{h, k}({\boldsymbol{\lambda }}_2)|&\le |z^{{\boldsymbol{\lambda }}_1}(\tau _k) - y^{{\boldsymbol{\lambda }}_1}(\tau _k) - z^{{\boldsymbol{\lambda }}_2}(\tau _k) - y^{{\boldsymbol{\lambda }}_2}(\tau _k)|\\&\le |z^{{\boldsymbol{\lambda }}_1}(\tau _k) - z^{{\boldsymbol{\lambda }}_2}(\tau _k)| + |y^{{\boldsymbol{\lambda }}_1}(\tau _k) - y^{{\boldsymbol{\lambda }}_2}(\tau _k)|\\&\le \mathcal {K}\Vert {\boldsymbol{\lambda }}_1 - {\boldsymbol{\lambda }}_2\Vert , \end{aligned} \end{aligned}$$

with \(\mathcal {K}= \kappa _3 + T\kappa _1 e^{\kappa _2T}\), which completes the proof of Theorem 3.    \(\square \)

It remains to show that Theorem 3 implies Lemma 1.

Proof

(of Lemma 1). Let \((h_i)_{i \ge 0}\) be a sequence of discretization steps such that \(\lim _{i \rightarrow \infty } h_i = 0\). Since the approximation method given by (7) is assumed to be convergent, each function \(\epsilon _{h_i}(\cdot )\) defined in Eq. (23) is pointwise convergent to 0.

Furthermore, we recall that \(\varPhi \) is Lipschitz continuous w.r.t. \({\boldsymbol{\lambda }}\in \textbf{W}\). Hence, Theorem 3 implies that the functions \(\big (\epsilon _{h_i}(\cdot )\big )_{i \ge 0}\) defined in Eq. (23) are also Lipschitz continuous, with uniform Lipschitz constant \(\mathcal {K}\):

$$\begin{aligned} \left| \epsilon _{h_i}({\boldsymbol{\lambda }}_1) - \epsilon _{h_i}({\boldsymbol{\lambda }}_2)\right| \le \mathcal {K}\left\| {\boldsymbol{\lambda }}_1 - {\boldsymbol{\lambda }}_2\right\| , \quad \forall {\boldsymbol{\lambda }}_1, {\boldsymbol{\lambda }}_2 \in \mathcal {B}_{{\boldsymbol{\lambda }}^*}, \quad \forall i \in \mathbb {N}. \end{aligned}$$

Consequently, the functions \(\big (\epsilon _{h_i}(\cdot )\big )_{i \ge 0}\) are uniformly equicontinuous. Hence, Arzelà-Ascoli Theorem [8] implies that the sequence \(\big (\epsilon _{h_i}(\cdot )\big )_{i \ge 0}\) converges uniformly to 0 on \(\mathcal {B}_{{\boldsymbol{\lambda }}^*}\), thus \(\forall \varepsilon > 0\), \(\exists i^* \in \mathbb {N}\), \(\forall i \ge i^*\), \(\forall {\boldsymbol{\lambda }}\in \mathcal {B}_{{\boldsymbol{\lambda }}^*}\), \(\epsilon _{h_i}({\boldsymbol{\lambda }}) < \varepsilon \), and Lemma 1 is proved.    \(\square \)

Remark 2 (Computation of a sufficiently small integration step)

We emphasize that Lemma 1 can be supplemented by an explicit choice of a sufficiently small integration step h, provided the integration method comes with appropriate estimates of their global error. Notably, the accuracy of the Runge-Kutta 4 method, which we use for the numerical treatment of our case studies, has been thoroughly studied (see [16] for instance), and it is known that its inherent error can be bounded in terms of the successive derivatives of the function f involved in Eq. (1), up to order 4.

B Proof of Theorem 2

First Step. We begin the proof of Theorem 2 by showing how to compute an estimator \(\hat{p}_1^\varepsilon \) of the probability \(p_1^\varepsilon \) defined in (14).

Let \(({\boldsymbol{\lambda }}_i)_\mathbb {N}\) be a sequence of values in the ball \(\mathcal {B}_{{\boldsymbol{\lambda }}^*}\). We write \(B_i\) the random variable corresponding to the test “\(\varphi _1^\varepsilon ({\boldsymbol{\lambda }}_i)\) holds”: all the \(B_i\) are i.i.d. variables and follow a Bernoulli’s law of parameter \(p_1^\varepsilon \). We write \(b_i\) the evaluation of \(B_i\). We introduce the transfer function \(g_1\,: \mathcal {B}_{{\boldsymbol{\lambda }}^*}\rightarrow \{0,1\}\) corresponding to the test regarding \(\varphi _1^\varepsilon ({\boldsymbol{\lambda }}_i)\), defined by \(g_1({\boldsymbol{\lambda }}_i) = 1\) if \(\varphi _1^\varepsilon ({\boldsymbol{\lambda }}_i)\) holds, 0 otherwise. Next, we consider

$$\begin{aligned} G = \mathbb {E}(g_1(X)) = \int _{\mathcal {B}_{{\boldsymbol{\lambda }}^*}} g_1(x)f_X(x)\textrm{d}x, \end{aligned}$$
(27)

where \(f_X\) is defined by a uniform distribution, that is, \(f_X(x) = \frac{1}{\left| \mathcal {B}_{{\boldsymbol{\lambda }}^*}\right| }\), \(x \in \mathcal {B}_{{\boldsymbol{\lambda }}^*}\). We produce a sample \((x_1, x_2, \dots , x_N)\) of the variable X in \(\mathcal {B}_{{\boldsymbol{\lambda }}^*}\), and use it to compute the Monte-Carlo estimator G. By virtue of the Law of Large Numbers, the sample mean satisfies: \(\overline{g}_N = \frac{1}{N} \sum _{i=1}^N g_1{x_i}\). The Central Limit Theorem states that the variable \(Z = \frac{\overline{g}_N - G}{\sigma _{\overline{g}_N}}\) approximately follows a Standard Normal Distribution \(\mathcal {N}(0,1)\); hence, for a risk \(\theta \), we can bound the error \(|\alpha _N|\) of swapping G with \(\overline{g}_N\) by building confidence intervals:

$$\begin{aligned} \mathbb {P}\left( |\alpha _N|\le \chi _{1 - \frac{\theta }{2}} \frac{\sigma _{g_1}}{\sqrt{N}}\right) = 1 - \theta , \end{aligned}$$
(28)

where \(\chi _{1 - \frac{\theta }{2}}\) is the quantile of the Standard Normal Distribution \(\mathcal {N}(0,1)\) and \(\sigma _{g_1}\) is the variance of \(g_1\).

Since we are interested in finding \(p_1^\varepsilon \) with a certain confidence, we can perform this process after setting the desired target error \(\alpha \) and risk \(\theta \), knowing how many simulations must be ran using Hoeffding’s inequality [12]:

$$\begin{aligned} \theta = \mathbb {P}(\overline{g}_{N} \notin [p_1^\varepsilon - \alpha , p_1^\varepsilon + \alpha ]) \le 2 \exp (-2 \alpha ^2{N}), \end{aligned}$$

or equivalently \(N \ge \frac{\log (2/\theta )}{2\alpha ^2}\). Here, it is worth emphasizing that N can be chosen independently of \(\varepsilon \).

Further, the variance of \(\overline{g}_{N}\) can be expressed with the variance of \(g_1(X)\):

$$\begin{aligned} \sigma _{g_1}^2 = \mathbb {E}\left( [g_1(X) - \mathbb {E}(g_1(X))]^2\right) = \int _{\mathcal {B}_{{\boldsymbol{\lambda }}^*}} (g_1(x))^2 f_X(x) \textrm{d}x - G^2. \end{aligned}$$

We consider i.i.d. samples, hence \(\sigma _{g_1}^2\) can be estimated with the variance \(S_{g_1}^2\):

$$\begin{aligned} \sigma _{g_1}^2 \simeq S_{g_1}^2 = \frac{1}{N}\sum _{i = 1}^{N} (g_1({\boldsymbol{\lambda }}_i)^2 - \overline{g}_{N}^2). \end{aligned}$$

It follows that \(\sigma _{g_1}\) can be estimated with its empirical counterpart \(\hat{\sigma }_{g_1} = \sqrt{S_{g_1}^2}\), which shows that the error displays a \(1/\sqrt{N}\) convergence.

Finally, after estimating \(\sigma _{g_1}\), we can find \(\hat{p}_1^\varepsilon \) using the variance of Bernoulli’s law \(\hat{\sigma }_{g_1}^2 = \hat{p}_1^\varepsilon \times (1 - \hat{p}_1^\varepsilon )\). We conclude that the probability that \(\varphi _1^\varepsilon ({\boldsymbol{\lambda }})\) holds is estimated by \(\hat{p}_1^\varepsilon = \frac{1}{2} \left( 1 \pm \sqrt{1 - 4 \hat{\sigma }_{g_1}^2}\right) \), with an error \(\alpha \) and a risk \(\theta \), provided we perform \({N} \ge \frac{\log (2/\theta )}{2\alpha ^2}\) simulations. It follows that

$$\begin{aligned} \mathbb {P}\big ({p}_1^\varepsilon \in [\hat{p}_1^\varepsilon - \alpha , \hat{p}_1^\varepsilon + \alpha ] \big ) \ge 1 - \theta . \end{aligned}$$
(29)

Similarly, we determine an estimator \(\hat{p}_2^\varepsilon \) of \(p_2^\varepsilon \) by running \(N \ge \frac{\log (2/\theta )}{2\alpha ^2}\) additional simulations, and obtain a confidence interval satisfying

$$\begin{aligned} \mathbb {P}\big ({p}_2^\varepsilon \in [\hat{p}_2^\varepsilon - \alpha , \hat{p}_2^\varepsilon + \alpha ] \big ) \ge 1 - \theta . \end{aligned}$$
(30)

Second Step. Now, let us show how a confidence interval for the probability p can be derived from the confidence intervals given in (29), (30), involving the estimators \(\hat{p}_1^\varepsilon \) and \(\hat{p}_2^\varepsilon \) respectively. The independence of the samples used to determine the estimators \(\hat{p}_1^\varepsilon \), \(\hat{p}_2^\varepsilon \) guarantees that

$$\begin{aligned} \mathbb {P}(p \in [\hat{p}_1^\varepsilon - \alpha , \hat{p}_2^\varepsilon + \alpha ]) = \mathbb {P}\big (\lbrace p \ge \hat{p}_1^\varepsilon - \alpha \rbrace \big ) \times \mathbb {P}\big (\lbrace p \le \hat{p}_2^\varepsilon + \alpha \rbrace \big ). \end{aligned}$$

By virtue of (29), we have \(\mathbb {P}(p_1^\varepsilon \ge \hat{p}_1^\varepsilon - \alpha ) \ge 1 - \theta \). Next, the estimate (15) implies \(\mathbb {P}(p \ge \hat{p}_1^\varepsilon - \alpha ) \ge \mathbb {P}(p_1^\varepsilon \ge \hat{p}_1^\varepsilon - \alpha ) \ge 1 - \theta \). Similarly, we have \(\mathbb {P}(p \le \hat{p}_2^\varepsilon + \alpha ) \ge 1 - \theta \), and finally \(\mathbb {P}(p \in [\hat{p}_1^\varepsilon - \alpha , \hat{p}_2^\varepsilon + \alpha ]) \ge (1 - \theta )^2 = 1 - \xi \), since \(\theta = 1 - \sqrt{1 - \xi }\).

Third Step. Finally, let us prove how Lemma 1 guarantees that proper values of h and \(\varepsilon \) can be found, in order to control the distance between \(\hat{p}_1\) and \(\hat{p}_2\).

Indeed, the continuity of the probability measure \(\mathbb {P}\) ensures that there exists \(\varepsilon _0 > 0\) such that \(\left| p_1^\varepsilon - p_2^\varepsilon \right| \le \alpha \), for \(\varepsilon < \varepsilon _0\). Next, we write

$$\begin{aligned} \left| \hat{p}_1^\varepsilon - \hat{p}_2^\varepsilon \right| \le \left| \hat{p}_1^\varepsilon - p_1^\varepsilon \right| + \left| \hat{p}_2^\varepsilon - p_2^\varepsilon \right| + \left| p_1^\varepsilon - p_2^\varepsilon \right| , \end{aligned}$$

hence we have, for \(\varepsilon < \varepsilon _0\):

$$\begin{aligned} \begin{aligned} \mathbb {P}\big (\left| \hat{p}_1^\varepsilon - \hat{p}_2^\varepsilon \right| \le 3\alpha \big )&\ge \mathbb {P}(\left| \hat{p}_1^\varepsilon - p_1^\varepsilon \right| \le \alpha ) \times \mathbb {P}(\left| \hat{p}_2^\varepsilon - p_2^\varepsilon \right| \le \alpha ) \times \mathbb {P}(\left| p_1^\varepsilon - p_2^\varepsilon \right| \le \alpha )\\&\ge (1-\theta )^2 \times 1 = 1 - \xi . \end{aligned} \end{aligned}$$

In parallel, Lemma 1 guarantees that for h sufficiently small, the global stability error can be uniformly bounded on \(\mathcal {B}_{{\boldsymbol{\lambda }}^*}\) by \(\varepsilon _0\). The proof is complete.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Julien, D., Cantin, G., Delahaye, B. (2022). End-to-End Statistical Model Checking for Parametric ODE Models. In: Ábrahám, E., Paolieri, M. (eds) Quantitative Evaluation of Systems. QEST 2022. Lecture Notes in Computer Science, vol 13479. Springer, Cham. https://doi.org/10.1007/978-3-031-16336-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16336-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16335-7

  • Online ISBN: 978-3-031-16336-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics