Skip to main content

Design and Development of a Tomato Picking Soft Robotic Gripper with a Separator and Mechanical Iris Based Pedicel Cutting Mechanism

  • Conference paper
  • First Online:
Advances in System-Integrated Intelligence (SYSINT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 546))

Included in the following conference series:

Abstract

Picking tomatoes from plants in farm fields using an autonomous robotic gripper is a challenging problem especially when tomatoes are present in the form of a dense cluster as multiple aspects have to be kept in mind while doing the successful operation to prevent them from any kind of damage. Here we have proposed a novel compliant and soft robotic gripper with fingers in the form of curved beams made up of thermoplastic polyurethane (TPU) with a separating mechanism for picking target tomato from a cluster attached with a pedicel cutting mechanical iris mechanism having sharp blades. To actuate the gripper fingers a servo motor pulls them through a set of fishing lines. A comparison is drawn for the variation of fingertip positions, velocities, angle w.r.t time, and trajectory followed obtained through kinematic equations and motion tracking through a camera. Finally, a comparative analysis is done for the variation of separating, cutting, grasping, and total operation time w.r.t tomato sample diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, H., Wang, M.Y., Chen, F., Wang, Y., Kumar, A.S., Fuh, J.Y.: Design and development of a soft gripper with topology optimization. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6239–6244. IEEE (2017)

    Google Scholar 

  2. Davidson, J.R., Silwal, A., Hohimer, C.J., Karkee, M., Mo, C., Zhang, Q.: Proof-of-concept of a robotic apple harvester. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 634–639. IEEE (2016)

    Google Scholar 

  3. Shintake, J., Cacucciolo, V., Floreano, D., Shea, H.: Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018)

    Google Scholar 

  4. Tahir, A.M., Zoppi, M., Naselli, G.A.: PASCAV gripper: a pneumatically actuated soft cubical vacuum gripper. In: 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR), pp. 1–6. IEEE (2018)

    Google Scholar 

  5. Yamaguchi, N., Hasegawa, S., Okada, K., Inaba, M.: A gripper for object search and grasp through proximity sensing. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)

    Google Scholar 

  6. Sakamoto, N., Higashimori, M., Tsuji, T., Kaneko, M.: An optimum design of robotic hand for handling a visco-elastic object based on maxwell model. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1219–1225. IEEE (2007)

    Google Scholar 

  7. Yaguchi, H., Nagahama, K., Hasegawa, T., Inaba, M.: Development of an autonomous tomato harvesting robot with rotational plucking gripper. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 652–657. IEEE (2016)

    Google Scholar 

  8. Shah, S.H., Arsalan, M., Khan, S., Khan, M.T., Alam, M.S.: Design and compliance control of a robotic gripper for orange harvesting. In: 2019 22nd International Multitopic Conference (INMIC), pp. 1–5. IEEE (2019)

    Google Scholar 

  9. Lehnert, C., English, A., McCool, C., Tow, A.W., Perez, T.: Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot. Auto. Lett. 2(2), 872–879 (2017)

    Article  Google Scholar 

  10. Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., Kurita, M.: Evaluation of a strawberry-harvesting robot in a field test. Biosys. Eng. 105(2), 160–171 (2010)

    Article  Google Scholar 

  11. Xiong, Y., From, P.J., Isler, V.: Design and evaluation of a novel cable-driven gripper with perception capabilities for strawberry picking robots. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7384–7391. IEEE (2018)

    Google Scholar 

  12. Mghames, S., Hanheide, M., Ghalamzan, A.: Interactive movement primitives: planning to push occluding pieces for fruit picking. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2616–2623. IEEE (2020)

    Google Scholar 

  13. Van Henten, E., Van’t Slot, D., Hol, C., Van Willigenburg, L.: Optimal manipulator design for a cucumber harvesting robot. Comput. Electron. Agric. 65(2), 247–257 (2009)

    Article  Google Scholar 

  14. Xiong, Y., Ge, Y., Grimstad, L., From, P.J.: An autonomous strawberry-harvesting robot: design, development, integration, and field evaluation. J. Field Robot. 37(2), 202–224 (2020)

    Article  Google Scholar 

  15. Monta, M., Konda, N., Ting, K.: End-effectors for tomato harvesting robot. Artif. Intell. Biol. Agri. 12, 1–25 (1998). https://doi.org/10.1023/A:1006595416751

    Article  Google Scholar 

  16. Bachche, S., Oka, K., Sakamoto, H.: Development of current based temperature arc thermal cutting system for green pepper harvesting robot. In: Proceedings of the Shikoku-section Joint Convention of the Institute of Electrical and related Engineers, Takamatsu, Japan, vol. 29 (2012)

    Google Scholar 

  17. Bachche, S., Oka, K.: Performance testing of thermal cutting systems for sweet pepper harvesting robot in greenhouse horticulture. J. Syst. Des. Dyn. 7(1), 36–51 (2013)

    Google Scholar 

  18. Kondo, N., Yata, K., Iida, M., Shiigi, T., Monta, M., Kurita, M., Omori, H.: Development of an end-effector for a tomato cluster harvesting robot. Eng. Agric. Environ. Food 3(1), 20–24 (2010)

    Article  Google Scholar 

  19. Oktarina, Y., Dewi, T., Risma, P., Nawawi, M.: Tomato harvesting arm robot manipulator; a pilot project. In: Journal of Physics: Conference Series, vol. 1500, p. 012003. IOP Publishing (2020)

    Google Scholar 

  20. Ficken, L.A.: Iris mechanism. US Patent 4,804,108 (1989)

    Google Scholar 

  21. Navas, E., Fernández, R., Sepúlveda, D., Armada, M., Gonzalez-de Santos, P.: Soft grippers for automatic crop harvesting: a review. Sensors 21(8), 2689 (2021)

    Article  Google Scholar 

  22. Venkiteswaran, V.K., Su, H.J.: Pseudo-rigid-body models for circular beams under combined tip loads. Mech. Mach. Theory 106, 80–93 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Ansari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ansari, S., Bhattacharya, B. (2023). Design and Development of a Tomato Picking Soft Robotic Gripper with a Separator and Mechanical Iris Based Pedicel Cutting Mechanism. In: Valle, M., et al. Advances in System-Integrated Intelligence. SYSINT 2022. Lecture Notes in Networks and Systems, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-031-16281-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16281-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16280-0

  • Online ISBN: 978-3-031-16281-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics