Skip to main content

Spectrum Allocation in Optical Networks: DSatur Coloring and Upper Bounds

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research: Recent Trends (MOTOR 2022)

Abstract

Routing and Spectrum Allocation (RSA) is one of the central problems in modern optical networks. In this setting, also called Flexible Grid, we want to find paths and allocate non-overlapping frequency slots for as many demands as possible. As opposed to the Routing and Wavelength Assignment (RWA) problem, where all frequency slots are of the same width, demands in Flexible Grids may require slots of different sizes, which makes the original NP-hard problem even more challenging. In this paper, we consider Spectrum Allocation (when routing is known), develop an efficient greedy algorithm based on “degree of saturation”-coloring, and by means of Constraint Programming, we show that the greedy algorithm is almost optimal even for hard real-world instances.

Supported by Huawei Technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ssopt.org/2019.

References

  1. Christodoulopoulos, K., Tomkos, I., Varvarigos, E.: Elastic bandwidth allocation in flexible OFDM-based optical networks. IEEE J. Lightwave Technol. 29, 354–1366 (2011)

    Article  Google Scholar 

  2. Klinkowski, M., Walkowiak, K.: Routing and spectrum assignment in spectrum sliced elastic optical path network. IEEE Commun. Lett. 15(8), 884–886 (2011)

    Article  Google Scholar 

  3. Wang, Y., Cao, X., Pan, Y.: A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks. In: INFOCOM, 2011 Proceedings IEEE, pp. 1503–1511. IEEE (2011)

    Google Scholar 

  4. Velasco, L., Klinkowski, M., Ruiz, M., Comellas, J.: Modeling the routing and spectrum allocation problem for flex grid optical networks. Photon. Netw. Commun. 24, 1–10 (2012). https://doi.org/10.1007/s11107-012-0378-7

    Article  Google Scholar 

  5. Chen, X., Zhong, Y., Jukan, A.: Multipath routing in elastic optical networks with distance-adaptive modulation formats. In: IEEE ICC 2013-Optical Networks and Systems, pp. 3915–3920. IEEE (2013)

    Google Scholar 

  6. Chatterjee, B.C., Sarma, N., Oki, E.: Routing and spectrum allocation in elastic optical networks: a tutorial. IEEE Commun. Surv. Tutor. 17(3), 1776–1800 (2015)

    Article  Google Scholar 

  7. Salani, M., Rottondi, C., Tornatore, M.: Routing and spectrum assignment integrating machine-learning-based QoT estimation in elastic optical networks. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1738–1746. IEEE, Paris, France (2019)

    Google Scholar 

  8. Bouchard, M., Čangalović, M., Hertz, A.: About equivalent interval colorings of weighted graphs. Discr. Appl. Math. 157(17), 3615–3624 (2009)

    Article  MathSciNet  Google Scholar 

  9. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022)

    Google Scholar 

  10. Perron, L., Furnon, V.: OR-Tools 7.2, Google (2019)

    Google Scholar 

  11. SNDlib. http://sndlib.zib.de/

  12. Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008), pp. 11–15, Pasadena, CA, USA (2008)

    Google Scholar 

  13. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)

    Article  Google Scholar 

  14. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theoret. Comput. Sci. 363(1), 28-42 (2006). (Computing and Combinatorics, 10th Annual International Conference on Computing and Combinatorics (COCOON 2004). Elsevier (2006))

    Google Scholar 

  15. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques. Theoret. Comput. Sci. 407(1–3), 564–568 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Krechetov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krechetov, M., Kharitonov, M., Shmelkin, D. (2022). Spectrum Allocation in Optical Networks: DSatur Coloring and Upper Bounds. In: Kochetov, Y., Eremeev, A., Khamisov, O., Rettieva, A. (eds) Mathematical Optimization Theory and Operations Research: Recent Trends. MOTOR 2022. Communications in Computer and Information Science, vol 1661. Springer, Cham. https://doi.org/10.1007/978-3-031-16224-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16224-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16223-7

  • Online ISBN: 978-3-031-16224-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics