Skip to main content

UML Profile for IoT-Based Applications

  • Conference paper
  • First Online:
Advances in Computational Collective Intelligence (ICCCI 2022)

Abstract

In the last few years, the Internet of Things (IoT) has emerged as a new paradigm aimed at providing technological solutions for the monitoring and control of physical entities (so-called objects - cars, furniture, buildings). These new solutions encompass heterogeneous devices capable of: capturing information about the physical entities to which they are attached and/or the environment in which they are inserted, performing sensing tasks; acting on the physical domain, performing actuation tasks; and communicating with each other and/or with other systems via the Internet to achieve common goals. However, Designing systems of this kind is a real challenge and modeling with UML is consolidating itself as a resource to surmount this challenge. To deal with this situation, we contribute by proposing an adaptation of UML2.5 to IoT systems. It is in this context that we have defined a UML2.5 profile for the IoT system. This profile includes a set of stereotypes applied to meta-classes from the UML2.5 meta-model. These stereotypes are complemented by formal constraints in OCL. These extensions allow to improve the consistency checking of reusable system architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballerini, M., Polonelli, T., Brunelli, D., Magno, M., Benini, L.: NB-IoT versus lorawan: an experimental evaluation for industrial applications. IEEE Trans. Industr. Inf. 16(12), 7802–7811 (2020)

    Article  Google Scholar 

  2. Bassi, A., Bauer, M., Fiedler, M., Kramp, T., Van Kranenburg, R., Lange, S., Meissner, S.: Enabling things to talk. Springer Nature (2013)

    Google Scholar 

  3. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language user guide addison-wesley. Reading (1999)

    Google Scholar 

  4. Clements, P., Garlan, D., Little, R., Nord, R., Stafford, J.: Documenting software architectures: views and beyond. In: 25th International Conference on Software Engineering, 2003. Proceedings, pp. 740–741. IEEE (2003)

    Google Scholar 

  5. Costa, B., Pires, P.F., Delicato, F.C.: Modeling IoT applications with sysml4iot. In: 2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 157–164. IEEE (2016)

    Google Scholar 

  6. Costa, B., Pires, P.F., Delicato, F.C.: Modeling SOA-based IoT applications with soaml4iot. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 496–501. IEEE (2019)

    Google Scholar 

  7. Costa, B., Pires, P.F., Delicato, F.C., Li, W., Zomaya, A.Y.: Design and analysis of IoT applications: a model-driven approach. In: 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 392–399. IEEE (2016)

    Google Scholar 

  8. Fleurey, F., Morin, B.: Thingml: a generative approach to engineer heterogeneous and distributed systems. In: 2017 IEEE International Conference on Software Architecture Workshops (ICSAW), pp. 185–188. IEEE (2017)

    Google Scholar 

  9. Garlan, D.: Software architecture (2008)

    Google Scholar 

  10. Hussein, M., Li, S., Radermacher, A.: Model-driven development of adaptive IoT systems. In: MODELS (Satellite Events), pp. 17–23 (2017)

    Google Scholar 

  11. Kotronis, C., Nikolaidou, M., Dimitrakopoulos, G., Anagnostopoulos, D., Amira, A., Bensaali, F.: A model-based approach for managing criticality requirements in e-health iot systems. In: 2018 13th Annual Conference on System of Systems Engineering (SoSE), pp. 60–67. IEEE (2018)

    Google Scholar 

  12. Nguyen, X.T., Tran, H.T., Baraki, H., Geihs, K.: Frasad: a framework for model-driven IoT application development. In: 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 387–392. IEEE (2015)

    Google Scholar 

  13. Ogata, S., Nakagawa, H., Aoki, Y., Kobayashi, K., Fukushima, Y.: A tool to edit and verify IoT system architecture model. In: MODELS (Satellite Events), pp. 571–575 (2017)

    Google Scholar 

  14. Patel, P., Cassou, D.: Enabling high-level application development for the internet of things. J. Syst. Softw. 103, 62–84 (2015)

    Article  Google Scholar 

  15. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

    Article  Google Scholar 

  16. Reggio, G.: A UML-based proposal for IoT system requirements specification. In: Proceedings of the 10th International Workshop on Modelling in Software Engineering, pp. 9–16 (2018)

    Google Scholar 

  17. Robles-Ramirez, D.A., Escamilla-Ambrosio, P.J., Tryfonas, T.: IoTsec: UML extension for internet of things systems security modelling. In: 2017 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 151–156. IEEE (2017)

    Google Scholar 

  18. Thramboulidis, K., Christoulakis, F.: UML4IoT-a UML-based approach to exploit IoT in cyber-physical manufacturing systems. Comput. Ind. 82, 259–272 (2016)

    Article  Google Scholar 

  19. Warmer, J.B., Kleppe, A.G.: The object constraint language: getting your models ready for MDA. Addison-Wesley Professional (2003)

    Google Scholar 

  20. Zambonelli, F.: Towards a general software engineering methodology for the internet of things. arXiv preprint arXiv:1601.05569 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Ltaief .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ltaief, M., Hussein Toman, S., Hamel, L. (2022). UML Profile for IoT-Based Applications. In: Bădică, C., Treur, J., Benslimane, D., Hnatkowska, B., Krótkiewicz, M. (eds) Advances in Computational Collective Intelligence. ICCCI 2022. Communications in Computer and Information Science, vol 1653. Springer, Cham. https://doi.org/10.1007/978-3-031-16210-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16210-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16209-1

  • Online ISBN: 978-3-031-16210-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics