Skip to main content

Lightweight and Homomorphic Security Protocols for IoT

  • Conference paper
  • First Online:
Advances in Data Science and Artificial Intelligence (ICDSAI 2022)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 403))

  • 285 Accesses

Abstract

The rise in usage of IoT devices for data collection in various fields has been astronomical in recent times. There has been an increased requirement to process the collected data on various cloud providers as IoT devices are compute-constrained. However, online data processing presents a substantial security challenge, especially in sensitive data, such as finance and medicine. The motivation behind this chapter comes from the observation that the encryption algorithms used for IoT devices need to be lightweight because IoT devices are not capable of heavy computation and the algorithm must be homomorphic. This is important because when the encrypted data moves from the device’s private environment to the public network, the data integrity is a major factor for such sensors and measurement devices. In this way, the data never needs to be in its decrypted form outside the organization’s ecosystem. This chapter aims to first present the limitations of IoT devices in the context of IoT networks. Then, the chapter analyses some of the most popular security protocols for IoT networks and subsequently understands the need for lightweight and homomorphic encryption. Then, the chapter presents and compares the most widely used lightweight and homomorphic algorithms/schemes, finally presenting the observations and conclusions based on the study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Yadav, L. B. Prasad, IOT Devices for Control Applications: A Review), https://doi.org/10.1109/ICECA.2019.8821895 (2019).

  2. S. Ullah, B. Rinner, L. Marcenaro, Smart cameras with onboard signcryption for securing IoT applications), https://doi.org/10.1109/GIOTS.2017.8016279 (2017).

  3. D. Sehrawat, N. S. Gill, Deployment of IoT based smart environment: Key issues and challenges, https://doi.org/10.14419/ijet.v7i2.9504 (2018).

  4. S. I. A. Sharekh, K. H. A. A. Shqeerat, Security Challenges and Limitations in IoT Environments, http://paper.ijcsns.org/07_book/201902/20190224.pdf (2019).

  5. M. Pham, K. Xiong, A survey on security attacks and defense techniques for connected and autonomous vehicles, https://doi.org/10.1016/j.cose.2021.102269 (2021).

  6. B. Vankudoth, D. Vasumathi, Homomorphic Encryption Techniques for securing Data in Cloud Computing: A Survey, https://doi.org/10.5120/ijca2017913063 (2017).

  7. X. Yi, R. Paulet, E. Bertino, Homomorphic Encryption and Applications, https://link-springer-com-nitks.knimbus.com/book/10.1007/978-3-319-12229-8 (2014).

  8. I. Jabbar, S. N. Alsaad, Design and Implementation of Secure Remote e-Voting System Using Homomorphic Encryption, https://doi.org/10.6633/IJNS.201709.19(5).06 (2017).

  9. H. Li, T. Jing, A Lightweight Fine-Grained Searchable Encryption Scheme in Fog-Based Healthcare IoT Networks, https://www.hindawi.com/journals/wcmc/2019/1019767/ (2019).

  10. E. Bertino, K.-K. R. Choo, D. Georgakopolous, S. Nepal, Internet of Things (IoT): Smart and Secure Service Delivery, https://doi.org/10.1145/3013520 (2016).

  11. G. Peralta, R. G. Cid-Fuentes, J. Bilbao, P. M. Crespo, Homomorphic Encryption and Network Coding in IoT, https://www.mdpi.com/2079-9292/8/8/827/pdf-vor (2019).

  12. M. A. Will, R. K. Ko, Chapter 5 - A guide to homomorphic encryption, https://doi.org/10.1016/B978-0-12-801595-7.00005-7 (2015).

  13. D. Maimut, K. Ouafi, Lightweight Cryptography for RFID Tags, https://doi.org/10.1109/MSP.2012.43 (2012).

  14. M. Matsumoto, M. Oguchi, Speeding Up Encryption on IoT Devices Using Homomorphic Encryption, https://ieeexplore.ieee.org/document/9556230 (2021).

  15. J. Henkel, S. Pagani, H. Amrouch, L. Bauer, F. Samie, Ultra-Low Power and Dependability for IoT Devices (special session paper), https://www.researchgate.net/publication/312214220_Ultra-Low_Power_and_Dependability_for_IoT_Devices_Special_session_paper (2017).

  16. A. Siddiqa, A. Karim, A. Gani, Big data storage technologies: a survey, https://link.springer.com/article/10.1631/FITEE.1500441 (2017).

  17. J. Zouari, M. Hamdi, T.-H. Kim, A privacy-preserving homomorphic encryption scheme for the Internet of Things, https://doi.org/10.1109/IWCMC.2017.7986580 (2017).

  18. G. Peralta, R. G. Cid-Fuentes, J. Bilbao, P. M. Crespo, Homomorphic Encryption and Network Coding in IoT Architectures: Advantages and Future Challenges), https://www.mdpi.com/2079-9292/8/8/827/pdf-vor (2019).

  19. J. Cynthia, H. P. Sultana, M. N. Saroja, J. Senthil, Security Protocols for IoT, https://doi.org/10.1007/978-3-030-01566-4_1 (2018).

  20. U. Hunkeler, H. L. Truong, A. Stanford-Clark, MQTT-S – A publish/subscribe protocol for wireless Sensor networks, https://ieeexplore.ieee.org/abstract/document/4554519 (2008).

  21. S. Gruener, H. Koziolek, J. Rückert, Towards Resilient IoT Messaging: An Experience Report Analyzing MQTT Brokers, https://doi.org/10.1109/ICSA51549.2021.00015 (2021).

  22. N. Tantitharanukul, K. Osathanunkul, K. Hantrakul, P. Pramokchon, P. Khoenkaw, MQTT-Topics Management System for sharing of Open Data, https://doi.org/10.1109/ICDAMT.2017.7904935 (2017).

  23. M. Singh, M. Rajan, V. Shivraj, P. Balamuralidhar, Secure MQTT for Internet of Things (IoT), https://doi.org/10.1109/CSNT.2015.16 (2015).

  24. S. Chakraborty, A. Majumder, 6LoWPAN Security: Classification, Analysis and Open Research Issues, https://ssrn.com/abstract=3354367 (2019).

  25. P. K. Kamma, C. R. Palla, U. R. Nelakuditi, R. S. Yarrabothu, Design and implementation of 6LoWPAN border router, https://ieeexplore.ieee.org/document/7759025 (2016).

  26. T. Jager, The Generic Composite Residuosity Problem, https://link.springer.com/chapter/10.1007/978-3-8348-1990-1_5 (2012).

  27. X. Fan, F. Susan, W. Long, S. Li, Security Analysis of Zigbee, https://courses.csail.mit.edu/6.857/2017/project/17.pdf (2017).

  28. S. Gupta, R. Garg, N. Gupta, W. S. Alnumay, U. Ghosh, P. K. Sharma, Energy-efficient dynamic homomorphic security scheme for fog computing in IoT networks, https://doi.org/10.1016/j.jisa.2021.102768 (2021).

  29. G. Mitsis, P. A. Apostolopoulos, E. E. Tsiropoulou, S. Papavassiliou, Intelligent Dynamic Data Offloading in a Competitive Mobile Edge Computing Market, https://www.mdpi.com/1999-5903/11/5/118 (2019).

  30. A. Daeri, A. R. Zerek, M. A. Abuinjam, ElGamal public-key encryption, http://ipco-co.com/PET_Journal/Papers%20CEIT'14/025.pdf (2014).

  31. K. E. Makkaoui, A. Beni-Hssane, A. Ezzati, Cloud-ElGamal: An efficient homomorphic encryption scheme, https://doi.org/10.1109/WINCOM.2016.7777192 (2016).

  32. M. Yung, Y. Tsiounis, On the Security of ElGamal Based Encryption, https://doi.org/10.1007/BFb0054019 (1998).

  33. J. O. Blech, Proving the security of ElGamal encryption via indistinguishability logic, https://doi.org/10.1145/1982185.1982527 (2011).

  34. M. R. Baharon, Q. Shi, D. Llewellyn-Jones, A New Lightweight Homomorphic Encryption Scheme for Mobile Cloud Computing, https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.88 (2015).

  35. M. R. Baharon, Q. Shi, D. Llewellyn-Jones, A New Lightweight Homomorphic Encryption Scheme for Mobile Cloud Computing), https://ieeexplore.ieee.org/document/7363129 (2015).

  36. Çetin Kaya Koç, F. Özdemir, Z. Ödemiş Özger, Goldwasser-Micali Algorithm, https://link.springer.com/chapter/10.1007/978-3-030-87629-6_4 (2021).

  37. D. E. Denning, Digital signatures with RSA and other public-key cryptosystems, https://doi.org/10.1145/358027.358052 (1984).

  38. L. Fousse, P. Lafourcade, M. Alnuaimi, Benaloh’s Dense Probabilistic Encryption Revisited, https://arxiv.org/abs/1008.2991 (2010).

  39. A. ACAR, H. AKSU, A. S. ULUAGAC, M. CONT, A Survey on Homomorphic Encryption Schemes: Theory and Implementation, https://doi.org/10.1145/3214303 (2018).

  40. P. Ora, P. R. Pal, Data security and integrity in cloud computing based on RSA partial homomorphic and MD5 cryptography, https://doi.org/10.1109/10.1109/IC4.2015.7375655 (2016).

  41. G. J. Simmons, Symmetric and Asymmetric Encryption, https://doi.org/10.1145/356789.356793 (1979).

  42. I. Damgård, M. Jurik, A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System, https://doi.org/10.5555/648118.746742 (2001).

  43. O. Benamara, F. Merazka, A new distribution version of Boneh-Goh-Nissim cryptosystem: Security and performance analysis, https://www.tandfonline.com. https://doi.org/10.1080/09720529.2020.1782570 (2020).

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, I., Jain, A., Dhody, I.S., Chandavarkar, B.R. (2023). Lightweight and Homomorphic Security Protocols for IoT. In: Misra, R., et al. Advances in Data Science and Artificial Intelligence. ICDSAI 2022. Springer Proceedings in Mathematics & Statistics, vol 403. Springer, Cham. https://doi.org/10.1007/978-3-031-16178-0_12

Download citation

Publish with us

Policies and ethics