Skip to main content

Waste, Environment, and Sanitary Issues: Are They Really at Odds?

  • Chapter
  • First Online:
Minerals and Waste

Abstract

As urbanization and industrialization is growing at unprecedented rate, the global production of Municipal solid waste (MSW) and waste in general is constantly increasing. The management of waste and the technological solutions adopted have a direct impact on the health of the people and the environment. Leaching of transition metal ions, permeation and mobilization, bioaccumulation, aerosolization from waste storage and treatment sites may all concur to induce adverse effect on humans and on the environment, inducing serious adverse effects, including mortality, cancer, and reproductive issue, biota alteration and biodiversity reduction, when the potential direct and indirect impact of waste is taken into consideration. On the other hand, each waste management options provides a variety of environmental benefits that must be evaluated in a socioeconomic consistent risk benefit assessment. Health effects of waste are often modulated by the local waste characteristics, which vary with cultural, climatic, and socioeconomic variables, and institutional capacity. The effect on the environment and human health of emerging priorities, including waste from end-of-life of electrical and electronic equipment (e-waste), engineered nanomaterials (nano-waste), and microplastic pollution from inadequate waste management, is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahirwar R, Tripathi AK (2021) E-waste management: a review of recycling process, environmental and occupational health hazards, and potential solutions. Environ Nanotechnol Monitor Manage 15:100409

    Article  CAS  Google Scholar 

  2. Giusti L (2009) A review of waste management practices and their impact on human health. Waste Manage 29:2227–2239. https://doi.org/10.1016/j.wasman.2009.03.028

    Article  CAS  Google Scholar 

  3. Xu P, Chen Z, Wu L, Chen Y, Xu D, Shen H, Han J, Wang X, Lou X (2019) Health risk of childhood exposure to PCDD/Fs emitted from a municipal waste incinerator in Zhejiang, China. Sci Total Environ 689:937–944

    Article  CAS  Google Scholar 

  4. Vaccari M, Vinti G, Tudor T (2018) An analysis of the risk posed by leachate from dumpsites in developing countries. Environments 5

    Google Scholar 

  5. Vergara SE, Tchobanoglous G (2012) Municipal solid waste and the environment: a global perspective. Annu Rev Environ Resour 37:277–309

    Article  Google Scholar 

  6. Alam P, Ahmade K (2013) Impact of solid waste on health and the environment. Int J Sustain Dev Green Econ (IJSDGE) 2:165–168

    Google Scholar 

  7. Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Pub Health 16. https://doi.org/10.3390/ijerph16061060

  8. Wiedinmyer C, Yokelson RJ, Gullett BK (2014) Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environ Sci Technol 48:9523–9530. https://doi.org/10.1021/es502250z

    Article  CAS  Google Scholar 

  9. Williams PT (2005) Waste treatment and disposal. John Wiley & Sons

    Book  Google Scholar 

  10. Hoornweg D, Bhada-Tata P (2012) What a waste: waste management around the world. World Bank, Washington, DC, pp 9–15

    Google Scholar 

  11. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336. https://doi.org/10.1080/10643380290813462

  12. Luo HW, Zeng YF, Cheng Y, He DQ, Pan XL (2020) Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 703. https://doi.org/10.1016/j.scitotenv.2019.135468

  13. Kulikowska D, Klimiuk E (2008) The effect of landfill age on municipal leachate composition. Biores Technol 99:5981–5985. https://doi.org/10.1016/j.biortech.2007.10.015

  14. Vaverkova MD (2019) Landfill impacts on the environment-review. Geosciences 9. https://doi.org/10.3390/geosciences9100431

  15. Ghosh P, Thakur IS, Kaushik A (2017) Bioassays for toxicological risk assessment of landfill leachate: a review. Ecotoxicol Environ Saf 141:259–270. https://doi.org/10.1016/j.ecoenv.2017.03.023

  16. Baderna D, Maggioni S, Boriani E, Gemma S, Molteni M, Lombardo A, Colombo A, Bordonali S, Rotella G, Lodi M, Benfenati E (2011) A combined approach to investigate the toxicity of an industrial landfill’s leachate: chemical analyses, risk assessment and in vitro assays. Environ Res 111:603–613. https://doi.org/10.1016/j.envres.2011.01.015

  17. Ghosh P, Gupta A, Thakur IS (2015) Combined chemical and toxicological evaluation of leachate from municipal solid waste landfill sites of Delhi, India. Environ Sci Pollut Res Int 22:9148–9158. https://doi.org/10.1007/s11356-015-4077-7

  18. Talorete T, Limam A, Kawano M, Ben Rejeb Jenhani A, Ghrabi A, Isoda H (2008) Stress response of mammalian cells incubated with landfill leachate. Environ Toxicol Chem 27:1084–1092. https://doi.org/10.1897/06-648.1

  19. Alimba CG, Gandhi D, Sivanesan S, Bhanarkar MD, Naoghare PK, Bakare AA, Krishnamurthi K (2016) Chemical characterization of simulated landfill soil leachates from Nigeria and India and their cytotoxicity and DNA damage inductions on three human cell lines. Chemosphere 164:469–479. https://doi.org/10.1016/j.chemosphere.2016.08.093

  20. Ghosh P, Das MT, Thakur IS (2014) Mammalian cell line-based bioassays for toxicological evaluation of landfill leachate treated by Pseudomonas sp. ISTDF1. Environ Sci Pollut Res Int 21:8084–8094. https://doi.org/10.1007/s11356-014-2802-2

  21. Ghosh P, Swati and Thakur IS, (2014) Enhanced removal of COD and color from landfill leachate in a sequential bioreactor. Bioresour Technol 170:10–19. https://doi.org/10.1016/j.biortech.2014.07.079

  22. Wang G, Lu G, Yin P, Zhao L, Yu QJ (2016) Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line. J Hazard Mater 307:154–162. https://doi.org/10.1016/j.jhazmat.2015.12.069

  23. Vinti G, Bauza V, Clasen T, Medlicott K, Tudor T, Zurbrugg C, Vaccari M (2021) Municipal solid waste management and adverse health outcomes: a systematic review. Int J Environ Res Public Health 18. https://doi.org/10.3390/ijerph18084331

  24. Porta D, Milani S, Lazzarino AI, Perucci CA, Forastiere F (2009) Systematic review of epidemiological studies on health effects associated with management of solid waste. Environ Health 8. https://doi.org/10.1186/1476-069x-8-60

  25. Cointreau S (2006) Occupational and environmental health issues of solid waste management: special emphasis on middle-and lower-income countries. Urban Papers 2

    Google Scholar 

  26. Vrijheid M (2000) Health effects of residence near hazardous waste landfill sites: a review of epidemiologic literature. Environ Health Perspect 108:101–112. https://doi.org/10.2307/3454635

  27. WHO (2015) Waste and humans health: evidences and needs. WHO meeting Report, World Health Organization, Bonn, D

    Google Scholar 

  28. Palmer SR, Dunstan FD, Fielder H, Fone DL, Higgs G, Senior ML (2005) Risk of congenital anomalies after the opening of landfill sites. Environ Health Perspect 113:1362–1365. https://doi.org/10.1289/ehp.7487

  29. Rushton L (2003) Health hazards and waste management. Br Med Bull 68:183–197. https://doi.org/10.1093/bmb/ldg034

  30. Tomita A, Cuadros DF, Burns JK, Tanser F, Slotow R (2020) Exposure to waste sites and their impact on health: a panel and geospatial analysis of nationally representative data from South Africa, 2008–2015. The Lancet Planet Health 4:e223–e234

    Article  Google Scholar 

  31. Mattiello A, Chiodini P, Bianco E, Forgione N, Flammia I, Gallo C, Pizzuti R, Panico S (2013) Health effects associated with the disposal of solid waste in landfills and incinerators in populations living in surrounding areas: a systematic review. Int J Public Health 58:725–735. https://doi.org/10.1007/s00038-013-0496-8

    Article  Google Scholar 

  32. Farrell M, Jones DL (2009) Critical evaluation of municipal solid waste composting and potential compost markets. Bioresour Technol 100:4301–4310. https://doi.org/10.1016/j.biortech.2009.04.029

    Article  CAS  Google Scholar 

  33. Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agr Ecosyst Environ 123:1–14. https://doi.org/10.1016/j.agee.2007.07.004

    Article  Google Scholar 

  34. Azim K, Soudi B, Boukhari S, Perissol C, Roussos S, Alami IT (2018) Composting parameters and compost quality: a literature review. Org Agric 8:141–158

    Google Scholar 

  35. Wery N (2014) Bioaerosols from composting facilities-a review. Front Cell Infect Microbiol 4. https://doi.org/10.3389/fcimb.2014.00042

  36. Agency UE (2010) Composting and Potential Health Effects from Bioaerosols: Our Interim Guidance for Permit Applicants. UK Environment Agency, Bristol, UK

    Google Scholar 

  37. Pearson C, Littlewood E, Douglas P, Robertson S, Gant TW, Hansell AL (2015) Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies. J Toxicol Environ Health B Crit Rev 18:43–69. https://doi.org/10.1080/10937404.2015.1009961

  38. Domingo JL, Nadal M (2009) Domestic waste composting facilities: a review of human health risks. Environ Int 35:382–389. https://doi.org/10.1016/j.envint.2008.07.004

  39. Amlinger F, Pollak, M., Favoino (2004) Heavy metals and organic compounds from wastes used as organic fertilisers_Annex 2: compost quality definition. Legislation and standards. Working Group: compost legislation and standard

    Google Scholar 

  40. Robertson S, Douglas P, Jarvis D, Marczylo E (2019) Bioaerosol exposure from composting facilities and health outcomes in workers and in the community: a systematic review update. Int J Hyg Environ Health 222:364–386. https://doi.org/10.1016/j.ijheh.2019.02.006

  41. Cobb N, Sullivan P, Etzel RA (1995) Pilot study of health complaints associated with commercial processing of mushroom compost in southeastern Pennsylvania. J Agromed 2:13–25

    Google Scholar 

  42. Browne ML, Ju CL, Recer GM, Kallenbach LR, Melius JM, Horn EG (2001) A prospective study of health symptoms and Aspergillus fumigatus spore counts near a grass and leaf composting facility. Compost Sci & Utilization 9:241–249

    Google Scholar 

  43. Herr CEW, zur Nieden A, Jankofsky M, Stilianakis NI, Boedeker RH, Eikmann TF (2003) Effects of bioaerosol polluted outdoor air on airways of residents: a cross sectional study. Occup Environ Med 60:336–342. https://doi.org/10.1136/oem.60.5.336

  44. Gao NB, Kamran K, Quan C, Williams PT (2020) Thermochemical conversion of sewage sludge: a critical review. Prog Energy Combust Sci 79. https://doi.org/10.1016/j.pecs.2020.100843

  45. Udayanga WC, Veksha A, Giannis A, Lisak G, Chang VW-C, Lim T-T (2018) Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 226:721–744

    Google Scholar 

  46. Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sustain Energy Rev 12:116–140. https://doi.org/10.1016/j.rser.2006.05.014

  47. CEC (2000) Council Directive of 27 April 2000 on Working Document on Sludge—third draft. In: Environment ECD (ed) Brussels (B)

    Google Scholar 

  48. Raheem A, Sikarwar VS, He J, Dastyar W, Dionysiou DD, Wang W, Zhao M (2018) Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review. Chem Eng J 337:616–641. https://doi.org/10.1016/j.cej.2017.12.149

  49. Fijalkowski K, Rorat A, Grobelak A, Kacprzak MJ (2017) The presence of contaminations in sewage sludge—the current situation. J Environ Manage 203:1126–1136. https://doi.org/10.1016/j.jenvman.2017.05.068

  50. Jia S, Zhang X (2020) Biological HRPs in wastewater. High-risk pollutants in wastewater, Elsevier, pp 41–78

    Google Scholar 

  51. Richards BK, Steenhuis TS, Peverly JH, McBride MB (2000) Effect of sludge-processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading. Environ Pollut 109:327–346. https://doi.org/10.1016/S0269-7491(99)00249-3

  52. Choudri B, Al-Awadhi T, Charabi Y, Al-Nasiri N (2020) Wastewater treatment, reuse, and disposal-associated effects on environment and health. Water Environ Res 92:1595–1602

    Google Scholar 

  53. Lazzari L, Sperni L, Bertin P, Pavoni B (2000) Correlation between inorganic (heavy metals) and organic (PCBs and PAHs) micropollutant concentrations during sewage sludge composting processes. Chemosphere 41:427–435. https://doi.org/10.1016/S0045-6535(99)00289-1

  54. Clarke BO, Smith SR (2011) Review of “emerging” organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int 37:226–247. https://doi.org/10.1016/j.envint.2010.06.004

  55. Manzetti S, van der Spoel D (2015) Impact of sludge deposition on biodiversity. Ecotoxicology 24:1799–1814. https://doi.org/10.1007/s10646-015-1530-9

  56. Yoshida H, Christensen TH, Scheutz C (2013) Life cycle assessment of sewage sludge management: a review. Waste Manage Res 31:1083–1101. https://doi.org/10.1177/0734242x13504446

  57. Thorn J, Kerekes E (2001) Health effects among employees in sewage treatment plants: a literature survey. Am J Ind Med 40:170–179

    Article  CAS  Google Scholar 

  58. Muzaini K, Yasin SM, Ismail Z and Ishak AR (2021) Systematic review of potential occupational respiratory hazards exposure among sewage workers. Front Public Health 9

    Google Scholar 

  59. Glas C, Hotz P, Steffen R (2001) Hepatitis A in workers exposed to sewage: a systematic review. Occup Environ Med 58:762–768

    Google Scholar 

  60. Jaremków A, Szałata Ł, Kołwzan B, Sówka I, Zwoździak J and Pawlas K (2017) Impact of a sewage treatment plant on health of local residents: gastrointestinal system symptoms. Pol J Environ Stud 26

    Google Scholar 

  61. Keil A, Wing S, Lowman A (2011) Suitability of public records for evaluating health effects of treated sewage sludge in North Carolina. N C Med J 72:98–104

    Google Scholar 

  62. Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42

    Google Scholar 

  63. Ilankoon I, Ghorbani Y, Chong MN, Herath G, Moyo T, Petersen J (2018) E-waste in the international context—a review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manage 82:258–275

    Google Scholar 

  64. Ádám B, Göen T, Scheepers PT, Adliene D, Batinic B, Budnik LT, Duca R-C, Ghosh M, Giurgiu DI, Godderis L (2021) From inequitable to sustainable e-waste processing for reduction of impact on human health and the environment. Environ Res 194:110728

    Google Scholar 

  65. Frazzoli C, Orisakwe OE, Dragone R, Mantovani A (2010) Diagnostic health risk assessment of electronic waste on the general population in developing countries’ scenarios. Environ Impact Assess Rev 30:388–399

    Google Scholar 

  66. Okeme J, Arrandale V (2019) Electronic waste recycling: occupational exposures and work-related health effects. Curr Environ Health Rep 6:256–268

    Article  CAS  Google Scholar 

  67. Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manage 31:45–58

    Article  CAS  Google Scholar 

  68. Li W, Achal V (2020) Environmental and health impacts due to e-waste disposal in China—a review. Sci Total Environ 737:139745

    Article  CAS  Google Scholar 

  69. Perkins DN, Brune Drisse MN, Nxele T, Sly PD (2014) E-waste: a global hazard. Ann Glob Health 80:286–295. https://doi.org/10.1016/j.aogh.2014.10.001

  70. McDonald TA (2002) A perspective on the potential health risks of PBDEs. Chemosphere 46:745–755. https://doi.org/10.1016/s0045-6535(01)00239-9

    Article  CAS  Google Scholar 

  71. Wu Z, He C, Han W, Song J, Li H, Zhang Y, Jing X, Wu W (2020) Exposure pathways, levels and toxicity of polybrominated diphenyl ethers in humans: a review. Environ Res 187:109531. https://doi.org/10.1016/j.envres.2020.109531

  72. IARC (2016) Polychlorinated biphenyls and polybrominated biphenyls international agency for research on cancer, Lyon, F.

    Google Scholar 

  73. IARC (2012) Arsenic, metals, fibres, and dusts: review of human carcinogens. International Agency for Research on Cancer, Lyon, F.

    Google Scholar 

  74. Schecter A, Birnbaum L, Ryan JJ, Constable JD (2006) Dioxins: an overview. Environ Res 101:419–428. https://doi.org/10.1016/j.envres.2005.12.003

  75. IARC (1983) Polynuclear aromatic compounds, Part 1: chemical, environmental and experimental data. International Agency for Research on Cancer, Lyon, F.

    Google Scholar 

  76. IARC (2006) Inorganic and organic lead compounds. International Agency for Research on Cancer, Lyon, F.

    Google Scholar 

  77. Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163. https://doi.org/10.1080/10408440500534032

  78. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17113782

  79. Bernhoft RA (2012) Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012:460508. https://doi.org/10.1155/2012/460508

    Article  Google Scholar 

  80. Agnew UM, Slesinger TL (2022) Zinc toxicity. StatPearls, Treasure Island (FL)

    Google Scholar 

  81. Das KK, Reddy RC, Bagoji IB, Das S, Bagali S, Mullur L, Khodnapur JP, Biradar MS (2018) Primary concept of nickel toxicity—an overview. J Basic Clin Physiol Pharmacol 30:141–152. https://doi.org/10.1515/jbcpp-2017-0171

    Article  CAS  Google Scholar 

  82. Oskarsson A (2022) Barium. Elsevier, Handbook on the toxicology of metals, pp 91–100

    Google Scholar 

  83. Strupp C (2011) Beryllium metal II. a review of the available toxicity data. Ann Occup Hyg 55:43–56. https://doi.org/10.1093/annhyg/meq073

    Article  CAS  Google Scholar 

  84. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  Google Scholar 

  85. Sepúlveda A, Schluep M, Renaud FG, Streicher M, Kuehr R, Hagelüken C, Gerecke AC (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environ Impact Assess Rev 30:28–41

    Article  Google Scholar 

  86. Grant K, Goldizen FC, Sly PD, Brune M-N, Neira M, van den Berg M, Norman RE (2013) Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health 1:e350–e361

    Article  Google Scholar 

  87. Song Q, Li J (2015) A review on human health consequences of metals exposure to e-waste in China. Environ Pollut 196:450–461

    Article  CAS  Google Scholar 

  88. Xu X, Zeng X, Boezen HM, Huo X (2015) E-waste environmental contamination and harm to public health in China. Front Med 9:220–228

    Article  Google Scholar 

  89. Cai K, Song Q, Yuan W, Ruan J, Duan H, Li Y, Li J (2020) Human exposure to PBDEs in e-waste areas: a review. Environ Pollut 115634

    Google Scholar 

  90. Awasthi AK, Wang M, Awasthi MK, Wang Z, Li J (2018) Environmental pollution and human body burden from improper recycling of e-waste in China: a short-review. Environ Pollut 243:1310–1316

    Article  CAS  Google Scholar 

  91. Ceballos DM, Dong Z (2016) The formal electronic recycling industry: challenges and opportunities in occupational and environmental health research. Environ Int 95:157–166

    Article  CAS  Google Scholar 

  92. Parvez SM, Jahan F, Brune M-N, Gorman JF, Rahman MJ, Carpenter D, Islam Z, Rahman M, Aich N, Knibbs LD (2021) Health consequences of exposure to e-waste: an updated systematic review. The Lancet Planet Health 5:e905–e920

    Article  Google Scholar 

  93. Zeng X, Huo X, Xu X, Liu D, Wu W (2020) E-waste lead exposure and children’s health in China. Sci Total Environ 734:139286

    Google Scholar 

  94. Plastic Europe (2022) Brussels, Belgium

    Google Scholar 

  95. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3. https://doi.org/10.1126/sciadv.1700782

  96. Jiang B, Kauffman AE, Li L, McFee W, Cai B, Weinstein J, Lead JR, Chatterjee S, Scott GI, Xiao S (2020) Health impacts of environmental contamination of micro- and nanoplastics: a review. Environ Health Prev Med 25:29. https://doi.org/10.1186/s12199-020-00870-9

    Article  Google Scholar 

  97. Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409:3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

  98. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, Takada H, Teh S, Thompson RC (2013) Classify plastic waste as hazardous. Nature 494:169–171. https://doi.org/10.1038/494169a

  99. Hussain CM, Keçili R (2019) Modern environmental analysis techniques for pollutants. Elsevier

    Google Scholar 

  100. Mitrano DM, Wohlleben W (2020) Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat Commun 11:5324. https://doi.org/10.1038/s41467-020-19069-1

  101. Peng J, Wang J, Cai L (2017) Current understanding of microplastics in the environment: occurrence, fate, risks, and what we should do. Integr Environ Assess Manag 13:476–482

    Google Scholar 

  102. IARC (2012) Chemical agents and related occupations. International Agency for Research on Cancer, Lyon, F.

    Google Scholar 

  103. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194

    Google Scholar 

  104. Gunaalan K, Fabbri E, Capolupo M (2020) The hidden threat of plastic leachates: a critical review on their impacts on aquatic organisms. Water Res 184:116170

    Google Scholar 

  105. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199

    Google Scholar 

  106. Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans Roy Soc B: Biol Sci 364:2097–2113

    Google Scholar 

  107. Turner A, Filella M (2021) Hazardous metal additives in plastics and their environmental impacts. Environ Int 156:106622

    Google Scholar 

  108. Liao Y-l and Yang J-y (2020) Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Sci Total Environ 703:134805

    Google Scholar 

  109. Wang W, Wang J (2018) Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. Chemosphere 193:567–573

    Google Scholar 

  110. Hu L, Chernick M, Lewis AM, Ferguson PL, Hinton DE (2020) Chronic microfiber exposure in adult Japanese medaka (Oryzias latipes). PLoS ONE 15:e0229962. https://doi.org/10.1371/journal.pone.0229962

  111. Bouwmeester H, Hollman PC, Peters RJ (2015) Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 49:8932–8947. https://doi.org/10.1021/acs.est.5b01090

  112. Rochman CM, Hoellein T (2020) The global odyssey of plastic pollution. Science 368:1184–1185. https://doi.org/10.1126/science.abc4428

  113. Brahney J, Hallerud M, Heim E, Hahnenberger M, Sukumaran S (2020) Plastic rain in protected areas of the United States. Science 368:1257–1260. https://doi.org/10.1126/science.aaz5819

  114. Hoellein TJ, Shogren AJ, Tank JL, Risteca P, Kelly JJ (2019) Microplastic deposition velocity in streams follows patterns for naturally occurring allochthonous particles. Sci Rep 9:1–11

    Google Scholar 

  115. Provencher JF, Ammendolia J, Rochman CM, Mallory ML (2019) Assessing plastic debris in aquatic food webs: what we know and don’t know about uptake and trophic transfer. Environ Rev 27:304–317. https://doi.org/10.1139/er-2018-0079

  116. Chang X, Xue Y, Li J, Zou L, Tang M (2020) Potential health impact of environmental micro- and nanoplastics pollution. J Appl Toxicol 40:4–15. https://doi.org/10.1002/jat.3915

  117. Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51:6634–6647. https://doi.org/10.1021/acs.est.7b00423

  118. Smith M, Love DC, Rochman CM, Neff RA (2018) Microplastics in seafood and the implications for human health. Curr Environ Health Rep 5:375–386. https://doi.org/10.1007/s40572-018-0206-z

  119. Lusher AH P, Mendoza-Hill J (2017) Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety

    Google Scholar 

  120. Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126. https://doi.org/10.1016/j.envpol.2017.11.043

  121. Pauly JL, Stegmeier SJ, Allaart HA, Cheney RT, Zhang PJ, Mayer AG, Streck RJ (1998) Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Preven Biomarkers 7:419–428

    Google Scholar 

  122. Law B, Bunn W, Hesterberg T (1990) Solubility of polymeric organic fibers and manmade vitreous fibers in Gambles solution. Inhalation Toxicol 2:321–339

    Google Scholar 

  123. Part F, Berge N, Baran P, Stringfellow A, Sun W, Bartelt-Hunt S, Mitrano D, Li L, Hennebert P, Quicker P (2018) A review of the fate of engineered nanomaterials in municipal solid waste streams. Waste Manage 75:427–449

    Google Scholar 

  124. OECD (2016) Nanomaterials in waste streams

    Google Scholar 

  125. Musee N (2011) Nanowastes and the environment: potential new waste management paradigm. Environ Int 37:112–128

    Google Scholar 

  126. Ounoughene G, LeBihan O, Debray B, Chivas-Joly C, Longuet C, Joubert A, Lopez-Cuesta J-M and Le Coq L (2017) Thermal disposal of waste containing nanomaterials: first investigations on a methodology for risk management. J Phys Conf Ser IOP Publishing, 012024

    Google Scholar 

  127. Manžuch Z, Akelytė R, Camboni M, Carlander D, García RP, Kriščiūnaitė G, Baun A, Kaegi R (2021) Study on the product lifecycles, waste recycling and the circular economy for nanomaterials. European Chemical Agency, Helsinky, FL

    Google Scholar 

  128. Jones W, Gibb A, Goodier C, Bust P, Song M, Jin J (2019) Nanomaterials in construction–what is being used, and where? Proceed Inst Civ Eng Constr Mater 172:49–62

    Google Scholar 

  129. Brar SK, Verma M, Tyagi R, Surampalli R (2010) Engineered nanoparticles in wastewater and wastewater sludge–evidence and impacts. Waste Manage 30:504–520

    Google Scholar 

  130. Kunhikrishnan A, Shon HK, Bolan NS, El Saliby I, Vigneswaran S (2015) Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Crit Rev Environ Sci Technol 45:277–318

    Google Scholar 

  131. Liu W, Weng C, Zheng J, Peng X, Zhang J, Lin Z (2019) Emerging investigator series: treatment and recycling of heavy metals from nanosludge. Environ Sci Nano 6:1657–1673

    Google Scholar 

  132. Stamou I, Antizar-Ladislao B (2016) The impact of silver and titanium dioxide nanoparticles on the in-vessel composting of municipal solid waste. Waste Manage 56:71–78

    Google Scholar 

  133. Yang Y, Wang Y, Westerhoff P, Hristovski K, Jin VL, Johnson M-VV, Arnold JG (2014) Metal and nanoparticle occurrence in biosolid-amended soils. Sci Total Environ 485:441–449

    Google Scholar 

  134. Oliveira ML, Izquierdo M, Querol X, Lieberman RN, Saikia BK, Silva LF (2019) Nanoparticles from construction wastes: a problem to health and the environment. J Clean Prod 219:236–243

    Google Scholar 

  135. Buonanno G, Morawska L (2015) Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens. Waste Manage 37:75–81

    Google Scholar 

  136. Johnson DR (2016) Nanometer-sized emissions from municipal waste incinerators: a qualitative risk assessment. J Hazard Mater 320:67–79

    Google Scholar 

  137. Roma J, Matos AR, Vinagre C, Duarte B (2020) Engineered metal nanoparticles in the marine environment: a review of the effects on marine fauna. Marine Environ Res 105110

    Google Scholar 

  138. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Google Scholar 

  139. Courtois P, Rorat A, Lemiere S, Guyoneaud R, Attard E, Levard C, Vandenbulcke F (2019) Ecotoxicology of silver nanoparticles and their derivatives introduced in soil with or without sewage sludge: a review of effects on microorganisms, plants and animals. Environ Pollut 253:578–598

    Google Scholar 

  140. McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    Google Scholar 

  141. McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    Google Scholar 

  142. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ Pollut 172:76–85

    Google Scholar 

  143. Du J, Tang J, Xu S, Ge J, Dong Y, Li H, Jin M (2020) ZnO nanoparticles: recent advances in ecotoxicity and risk assessment. Drug Chem Toxicol 43:322–333

    Google Scholar 

  144. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett 7:219–242

    Google Scholar 

  145. Bakshi M and Kumar A (2021) Copper based nanoparticles in the soil-plant environment: assessing their applications, interactions, fate, and toxicity. Chemosphere 130940

    Google Scholar 

  146. Roes L, Patel MK, Worrell E, Ludwig C (2012) Preliminary evaluation of risks related to waste incineration of polymer nanocomposites. Sci Total Environ 417:76–86

    Google Scholar 

  147. Köhler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16:927–937

    Google Scholar 

  148. Rodríguez-Ibarra C, Déciga-Alcaraz A, Ispanixtlahuatl-Meráz O, Medina-Reyes EI, Delgado-Buenrostro NL, Chirino YI (2020) International landscape of limits and recommendations for occupational exposure to engineered nanomaterials. Toxicol Lett 322:111–119

    Google Scholar 

  149. Leikauf GD, Kim S-H, Jang A-S (2020) Mechanisms of ultrafine particle-induced respiratory health effects. Exp Mol Med 52:329–337

    Google Scholar 

  150. Vejerano EP, Ma Y, Holder AL, Pruden A, Elankumaran S, Marr LC (2015) Toxicity of particulate matter from incineration of nanowaste. Environ Sci Nano 2:143–154

    Google Scholar 

  151. Chivas-Joly C, Longuet C, Pourchez J, Leclerc L, Sarry G, Lopez-Cuesta J-M (2019) Physical, morphological and chemical modification of Al-based nanofillers in by-products of incinerated nanocomposites and related biological outcome. J Hazard Mater 365:405–412

    Google Scholar 

  152. Stueckle TA, White A, Wagner A, Gupta RK, Rojanasakul Y, Dinu CZ (2019) Impacts of organomodified nanoclays and their incinerated byproducts on bronchial cell monolayer integrity. Chem Res Toxicol 32:2445–2458

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Turci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomatis, M., Petriglieri, J.R., Turci, F. (2023). Waste, Environment, and Sanitary Issues: Are They Really at Odds?. In: Tribaudino, M., Vollprecht, D., Pavese, A. (eds) Minerals and Waste. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-16135-3_10

Download citation

Publish with us

Policies and ethics