Skip to main content

Long Short-Term Memory Neural Network for Temperature Prediction in Laser Powder Bed Additive Manufacturing

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 544))

Included in the following conference series:

Abstract

In context of laser powder bed fusion (L-PBF), it is known that the properties of the final fabricated product highly depend on the temperature distribution and its gradient over the manufacturing plate. In this paper, we propose a novel means to predict the temperature gradient distributions during the printing process by making use of neural networks. This is realized by employing heat maps produced by an optimized printing protocol simulation and used for training a specifically tailored recurrent neural network in terms of a long short-term memory architecture. The aim of this is to avoid extreme and inhomogeneous temperature distribution that may occur across the plate in the course of the printing process. In order to train the neural network, we adopt a well-engineered simulation and unsupervised learning framework. To maintain a minimized average thermal gradient across the plate, a cost function is introduced as the core criteria, which is inspired and optimized by considering the well-known traveling salesman problem (TSP). As time evolves the unsupervised printing process governed by TSP produces a history of temperature heat maps that maintain minimized average thermal gradient. All in one, we propose an intelligent printing tool that provides control over the substantial printing process components for L-PBF, i.e. optimal nozzle trajectory deployment as well as online temperature prediction for controlling printing quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M., Porter, D., Kömi, J., Eissa, M., Faramawy, H., Mattar, T.: Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels. J. Iron. Steel Res. Int. 26, 1–16 (2019)

    Article  Google Scholar 

  2. Abdelrahman, M., Reutzel, E., Nassar, A., Starr, T.: Flaw detection in powder bed fusion using optical imaging. Addit. Manuf. 15, 1–11 (2017)

    Google Scholar 

  3. Baturynska, I., Semeniuta, O., Martinsen, K.: Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: A conceptual framework. Procedia Cirp. 67, 227–232 (2018)

    Article  Google Scholar 

  4. Flood, M.: The Traveling-Salesman Problem. Oper. Res. 4, 61–75 (1956)

    Article  MathSciNet  Google Scholar 

  5. Fish, J., Belytschko, T.: A first course in finite elements. Wiley (2007)

    Google Scholar 

  6. Großwendt, F., et al.: Additive manufacturing of a carbon-martensitic hot-work tool steel using a powder mixture - Microstructure, post-processing, mechanical properties. Mater. Sci. Eng. A. 827, 142038 (2021)

    Google Scholar 

  7. Lewis, H.: A guide to the theory of NP-completeness. J. Symbolic Logic. 48, 498–500 (1983)

    Article  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  9. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. ArXiv Preprint ArXiv:1412.6980 (2014)

  10. Kanko, J., Sibley, A., Fraser, J.: In situ morphology-based defect detection of selective laser melting through inline coherent imaging. J. Mater. Process. Technol. 231, 488–500 (2015)

    Article  Google Scholar 

  11. Krauss, H., Zeugner, T., Zaeh, M.: Layerwise monitoring of the selective laser melting process by thermography. Phys. Procedia 56, 64–71 (2014)

    Article  Google Scholar 

  12. Lecun, Y., Bengio, Y.: Convolutional Networks for Images, Speech and Time Series. In: The Handbook of Brain Theory and Neural Networks, pp. 255–258 (1995)

    Google Scholar 

  13. Mozaffar, M., et al.: Data-driven prediction of the high-dimensional thermal history in directed energy deposition processes via recurrent neural networks. Manufact. Lett. 18, 35–39 (2018)

    Article  Google Scholar 

  14. The MathWorks, k-Means Clustering (2020)

    Google Scholar 

  15. The MathWorks, Partial Differential Equation Toolbox (2020)

    Google Scholar 

  16. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  17. Taruttis, A., et al.: Laser additive manufacturing of hot work tool steel by means of a starting powder containing partly spherical pure elements and ferroalloys. Proc. CIRP 94, 46–51 (2020)

    Article  Google Scholar 

  18. Schoinochoritis, B., Chantzis, D., Salonitis, K.: Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 231, 96–117 (2017)

    Article  Google Scholar 

  19. Scime, L., Beuth, J.: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit. Manuf. 19, 114–126 (2018)

    Google Scholar 

  20. Scime, L., Beuth, J.: A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process. Addit. Manuf. 24, 273–286 (2018)

    Google Scholar 

  21. Song, X., et al.: Advances in additive manufacturing process simulation: Residual stresses and distortion predictions in complex metallic components. Mater. Des. 193, 108779 (2020)

    Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Tian, P., Ma, J., Zhang, D.: Application of the simulated annealing algorithm to the combinatorial optimisation problem with permutation property: An investigation of generation mechanism. Eur. J. Oper. Res. 118, 81–94 (1999)

    Article  Google Scholar 

  24. Zhang, Y., Chou, Y.: Three-dimensional finite element analysis simulations of the fused deposition modelling process. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 220, 1663–1671 (2006)

    Article  Google Scholar 

  25. Zhang, Y., Chou, K.: A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 222, 959–968 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The current work was supported by the European Regional Development Fund, EFRE 85037495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Mansouri Yarahmadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yarahmadi, A.M., Breuß, M., Hartmann, C. (2023). Long Short-Term Memory Neural Network for Temperature Prediction in Laser Powder Bed Additive Manufacturing. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 544. Springer, Cham. https://doi.org/10.1007/978-3-031-16075-2_8

Download citation

Publish with us

Policies and ethics