Skip to main content

Laboratory Diagnosis of Tuberculosis

  • Chapter
  • First Online:
Tuberculosis

Part of the book series: Integrated Science ((IS,volume 11))

  • 671 Accesses

Summary

The diagnosis of tuberculosis (TB) is multifaceted. It requires an integrated approach that extends to all facets resulting in early diagnosis of TB. In the era of evidence-based medicine, there is an absolute necessity of correctly detecting and promptly treating every case of TB. In this chapter, an attempt has been made to describe the advantages and disadvantages of present diagnostic modalities and discuss a few future diagnostic modalities and how their potential has the power to change the entire diagnostic approach of the present day. The technological breakthroughs will increase the accuracy of newer innovations, and large-scale production will make them economical and affordable diagnostic modalities. Considering the increased awareness regarding TB in the general population, an integrated approach by the World Health Organization (WHO), governments, communities, and private sectors, as well as behavioral change like the use of face masks worldwide due to coronavirus pandemic, we are optimistic about reaching the target set by ‘The END TB strategy’ by 2035.

Graphical Abstract

Tuberculosis diagnosis

A dread disease in which the struggle between soul and body is so gradual, quiet and solemn and the result so sure that day by day and grain by grain, the mortal part wastes and withers away. A disease… which sometimes moves in giant strides and sometimes at a tardy sluggish pace, but, slow or quick, is ever sure and certain…

Charles Dickens

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2019) Global tuberculosis report. Geneva

    Google Scholar 

  2. Guidelines for the collection, transport, processing, analysis, and reporting of cultures from specific specimen sources. In: Winn W, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, Woods G (2006) Koneman’s Color Atlas and Textbook of diagnostic microbiology. 6th edn. Lippincott Williams and Wilkins, New York

    Google Scholar 

  3. Clinical and Laboratory Standards Institute (2008) Laboratory detection and identification of mycobacteria; approved guideline—1st edition. In: CLSI document M48-A, Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  4. Bouza E, Dıaz-Lopez MD, Moreno S, Bernaldo de Quiros JC, Vicente T, Berenguer J (1993) Mycobacterium tuberculosis bacteremia in patients with and without human immunodeficiency virus infection. Arch Intern Med 153(4):496–500

    Article  CAS  PubMed  Google Scholar 

  5. Gopinath K, Kumar S, Singh S (2008) Prevalence of mycobacteremia in Indian HIV-infected patients detected by the MB/BacT automated culture system. Eur J Clin Microbiol Infect Dis 27(6):423–431

    Article  CAS  PubMed  Google Scholar 

  6. Chin DP, Hopewell PC, Yajko DM, Vittinghoff E, Horsburgh Jr CR, Hadley WK, Stone EN, Nassos PS, Ostroff SM, Jacobson MA (1994) Mycobacterium avium complex in the respiratory or gastrointestinal tract and the risk of M. avium complex bacteremia in patients with human immunodeficiency virus infection. J Infect Dis 169(2):289–295. https://doi.org/10.1093/infdis/169.2.289

  7. Kubica GP, Gross WM, Hawkins JE, Sommers HM, Vestal AL, Wayne LG (1975) Laboratory services for mycobacterial diseases. Am Rev Respir Dis 112(6):783–787

    Google Scholar 

  8. Shirvastava SR, Shirvastava PS, Ramasamy J (2014) Revised national tuberculosis control program: progress in the diagnostic front. J Mahatma Gandhi Inst Med Sci 19(2):164–165

    Article  Google Scholar 

  9. Desikan P (2013) Sputum smear microscopy in tuberculosis: Is it still relevant? Indian J Med Res 137(3):442–444

    PubMed  PubMed Central  Google Scholar 

  10. World Health Organization (2006) Handbook for using the International Standards for Tuberculosis Care. Tuberculosis Coalition for Technical Assistance, The Hague

    Google Scholar 

  11. Rawat J, Biswas D, Sindhwani G, Masih V (2010) An alternative 1-day smear microscopy protocol for the diagnosis of pulmonary tuberculosis. Respirology 15(7):1127–1130. https://doi.org/10.1111/j.1440-1843.2010.01827.x

    Article  PubMed  Google Scholar 

  12. Liu KT, Su WJ, Perng RP (2007) Clinical utility of polymerase chain reaction for diagnosis of smear-negative pleural tuberculosis. J Chin Med Assoc 70(4):148–151

    Article  CAS  PubMed  Google Scholar 

  13. Haldar S, Bose M, Chakrabarti P, Daginawala HF, Harinath BC, Kashyap RS, Kulkarni S, Majumdar A, Prasad HK, Rodrigues C, Srivastava R, Taori GM, Varma-Basil M, Tyagi JS (2011) Improved laboratory diagnosis of tuberculosis-the Indian experience. Tuberculosis 91(5):414–426. https://doi.org/10.1016/j.tube.2011.06.003

    Article  PubMed  Google Scholar 

  14. Derese Y, Hailu E, Assefa T, Bekele Y, Mihret A, Aseffa A, Hussien J, Ali I, Abebe M (2012) Comparison of PCR with standard culture of fifine needle aspiration samples in the diagnosis of tuberculosis lymphadenitis. J Infect Develop Countries 6(1):53–57

    Article  CAS  Google Scholar 

  15. Rickman TW, Moyer NP (1980) Increased sensitivity of acid fast smears. J Clin Microbiol 11(6):618–620. https://doi.org/10.1128/jcm.11.6.618-620.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lipsky BA, Gates J, Tenover FC, Plorde JJ (1984) Factors affecting the clinical value of microscopy for acid-fast bacilli. Rev Infect Dis 6(2):214–222. https://doi.org/10.1093/clinids/6.2.214

    Article  CAS  PubMed  Google Scholar 

  17. Sharma SK, Mohan A (2004) Extrapulmonary tuberculosis. Indian J Med Res 120(4):316–353

    CAS  PubMed  Google Scholar 

  18. Padmavathy L, Rao L, Veliath A (2003) Utility of polymerase chain reaction as a diagnostic tool in cutaneous tuberculosis. Indian J Dermatol Venereol Leprol 69:214–216

    CAS  PubMed  Google Scholar 

  19. Takahashi T, Tamura M, Asami Y (2008) Novel wide-range quantitative nested real time PCR assay for Mycobacterium tuberculosis DNA: clinical application for diagnosis of tuberculous meningitis. J Clin Microbiol 46(5):1698–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abbara A, Davidson RN (2011) Etiology and management of genitourinary tuberculosis. Nat Rev Urol 8(12):678–688

    Article  CAS  PubMed  Google Scholar 

  21. Woods GL, Brown-Elliott BA, Desmond EP, Hall GS, Heifets L, Pfyffer GE, Plaunt MR, Ridderhof JC, Wallace Jr RJ, Warren NG, Witebsky GF (2003) Susceptibility testing of Mycobacteria, Nocardia, and other Actinomycetes. In: Approved standard M24-A, vol 23(no. 18). NCCLS, Wayne, Pa

    Google Scholar 

  22. Runyon EH (1970) Identification of mycobacterial pathogens utilizing colony characteristics. Am J Clin Pathol 54:578–586

    Article  CAS  PubMed  Google Scholar 

  23. Miliner RA, Stottmeier KD, Kubica GP (1969) Formaldehyde: a photothermal activated toxic substance produced in Middlebrook 7H10 medium. Am Rev Respir Dis 99:603–607

    CAS  PubMed  Google Scholar 

  24. Gruft H (1971) Isolation of acid-fast bacilli from contaminated specimens. Health Lab Sci 8:79–82

    CAS  PubMed  Google Scholar 

  25. Petran EI, Vera HD (1971) Media for selective isolation of mycobacteria. Health Lab Sci 8:225–230

    CAS  PubMed  Google Scholar 

  26. Mitchison DA, Allen BW, Carrol L, Dickinson JM, Aber VR (1972) A selective oleic acid albumin agar medium for tubercle bacilli. J Med Microbiol 5:165–175. https://doi.org/10.1099/00222615-5-2-165

    Article  CAS  PubMed  Google Scholar 

  27. McClatchy JK, Waggoner RF, Kanes W, Cernich MS, Bolton TL (1976) Isolation of mycobacteria from clinical specimens by use of selective 7H11 medium. Am J Clin Pathol 65:412–415. https://doi.org/10.1093/ajcp/65.3.412

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues CS, Shanai SV, Almeida D, Sadani MA, Goyal N, Vadher C, Mehta AP (2007) Use of BACTEC 460 TB system in the diagnosis of tuberculosis. Indian J Med Microbiol 25:32–36. https://doi.org/10.4103/0255-0857.31059

    Article  CAS  PubMed  Google Scholar 

  29. Rodrigues C, Shenai S, Sadani M, Sukhadia N, Jani M, Ajbani K, Sodha A, Mehta A (2009) Evaluation of bactec MGIT 960 TB systemfor recovery and identification of Mycobacterium tuberculosis complex in a high volume tertiary care centre. Indian J Med Microbiol 27:217–221

    Article  CAS  PubMed  Google Scholar 

  30. Gil-Setas A, Torroba L, Fernandez JL, Martinez-Artola V, Olite J (2004) Evaluation of the MB/BacT system compared with Middlebrook 7H11 and Lowenstein-Jensen media for detection and recovery of mycobacteria from clinical specimens. Clin Microbiol Infect 10:224–228. https://doi.org/10.1111/j.1198-743x.2004.00733.x

    Article  CAS  PubMed  Google Scholar 

  31. Tholcken CA, Huang S, Woods GL (1997) Evaluation of the ESP culture system II for recovery of mycobacteria from blood specimens collected in isolator tubes. J Clin Microbiol 35:2681–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woods GL, Fish G, Plaunt M, Murphy T (1997) Clinical evaluation of Difco ESP culture system II for growth and detection of mycobacteria. J Clin Microbiol 35:121–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waite RT, Woods GL (1998) Evaluation of BACTEC MYCO/F LYTIC medium for recovery of Mycobacteria and fungi from blood. J Clin Microbiol 36:1176–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crump JA, Tanner DC, Mirrett S, McKnight CM, Reller LB (2003) Controlled comparison of BACTEC 13A, MYCO/F LYTIC, BacT/ALERT MB, and ISOLATOR 10 systems for detection of mycobacteremia. J Clin Microbiol 41:1987–1990. https://doi.org/10.1128/JCM.41.5.1987-1990.2003

    Article  PubMed  PubMed Central  Google Scholar 

  35. World Health Organization (2011) Policy Statement: commercial serodiagnostic tests for diagnosis of tuberculosis. Geneva

    Google Scholar 

  36. Morris K (2011) WHO recommends against inaccurate tuberculosis tests. Lancet 377:113–114

    Article  PubMed  Google Scholar 

  37. Pinto LM, Grenier J, Schumacher SG, Denkinger CM, Steingart KR, Pai M (2012) Immunodiagnosis of tuberculosis: state of the Art. Med Princ Pract 21:4–13. https://doi.org/10.1159/000331583

    Article  PubMed  Google Scholar 

  38. World Health Organization (2018) Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva

    Google Scholar 

  39. Dunn JJ, Starke JR, Revell PA (2016) Laboratory diagnosis of Mycobacterium tuberculosis infection and disease in children. J Clin Microbiol 54:1434–1441. https://doi.org/10.1128/JCM.03043-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ayub A, Yale SH, Reed KD, Nasser RM, Gilbert SR (2004) Testing for latent tuberculosis. Clin Med Res 2(3):191–194

    Article  PubMed  PubMed Central  Google Scholar 

  41. World Health Organization (2011) Use of tuberculosis interferon-gamma release assays (IGRAs) in low- and middle-income countries. Geneva

    Google Scholar 

  42. Middleton AM, Chadwick MV, Gaya H (1997) Detection of Mycobacterium tuberculosis in mixed broth cultures using DNA probes. Clin Microbiol Infect 3:668–671

    Article  PubMed  Google Scholar 

  43. Scarparo C, Piccoli P, Rigon A, Ruggiero G, Nista D, Piersimoni C (2001) Direct identification of mycobacteria from MB/BacT alert 3D bottles: comparative evaluation of two commercial probe assays. J Clin Microbiol 39:3222–3227. https://doi.org/10.1128/JCM.39.9.3222-3227.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Metchock B, Diem L (1995) Algorithm for use of nucleic acid probe for Identifying Mycobacterium Tuberculosis from BACTEC12 B Bottles. J Clin Microbiol 33:1934–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Badak FZ, Goksel S, Sertoz R, Nafile B, Ermertcan S, Cavusoglu C, Bilgic A (1999) Use of nucleic acid probes for identification of Mycobacterium tuberculosis directly from MB/BacT bottles. J Clin Microbiol 37:1602–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith MB, Bergmann JS, Harris SL, Woods GL (1997) Evaluation of the Roche AMPLICOR MTB assay for the detection of Mycobacterium tuberculosis in sputum specimens from prison inmates. Diagn Microbiol Infect Dis 27:113–116. https://doi.org/10.1016/s0732-8893(97)00029-1

    Article  CAS  PubMed  Google Scholar 

  47. Ichiyama S, Iinuma Y, Tawada Y, Yamori S, Hasegawa Y, Shimokata K, Nakashima N (1996) Evaluation of the Gen-Probe amplified Mycobacterium tuberculosis direct test and Roche PCR-Microwell plate hybridization method (Amplicor Mycobacterium) for direct detection of mycobacteria. J Clin Microbiol 34:130–133. https://doi.org/10.1128/jcm.34.1.130-133.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Sullivan CE, Miller DR, Schneider PS, Roberts GD (2002) Evaluation of Gen-Probe amplified Mycobacterium tuberculosis direct test by using respiratory and nonrespiratory specimens in a tertiary care center laboratory. J Clin Microbiol 40:1723–1727. https://doi.org/10.1128/JCM.40.5.1723-1727.2002

    Article  PubMed  PubMed Central  Google Scholar 

  49. Salfinger M, Hale YM, Driscoll JR (1998) Diagnostic tools in tuberculosis present and future. Respiration 65:163–170

    Google Scholar 

  50. Della-Latta P, Whittier S (1998) Comprehensive evaluation of performance, laboratory application, and clinical usefulness of two direct amplification technologies for the detection of Mycobacterium tuberculosis complex. Am J Clin Pathol 110:301–310

    Article  CAS  PubMed  Google Scholar 

  51. D’Amato RF, Wallman AA, Hochstein LH, Colaninno PM, Scardamaglia M, Ardila E, Ghouri M, Kim K, Patel RC, Miller A (1995) Rapid diagnosis of pulmonary tuberculosis by using Roche AMPLICOR Mycobacterium tuberculosis PCR test. J Clin Microbiol 33:1832–1834

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bodmer T, Gurtner A, Schopfer K, Matter L (1994) Screening of respiratory tract specimens for the presence of Mycobacterium tuberculosis by using the Gen-Probe Amplified Mycobacterium tuberculosis direct test. J Clin Microbiol 32:1483–1487. https://doi.org/10.1128/jcm.32.6.1483-1487.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bergmann JS, Yuoh G, Fish G, Woods GL (1999) Clinical evaluation of the enhanced gen-probe amplified Mycobacterium Tuberculosis direct test for rapid diagnosis of tuberculosis in prison inmates. J Clin Microbiol 37:1419–1425. https://doi.org/10.1128/JCM.37.5.1419-1425.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. World Health Organization (2010) Roadmap for rolling out Xpert MTB/RIF for rapid diagnosis of TB and MDR-TB 2010

    Google Scholar 

  55. Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, Kop J, Owens MR, Rodgers R, Banada P, Safi H, Blakemore R, Lan NTN, Jones-Lopez EC, Levi M, Burday M, Ayakaka I, Mugerwa RD, McMillan M, Winn-Deen E, Chistel L, Dailey P, Perkins MD, Persing DH, Alland D (2010) Rapid detection of Mycobacterium tuberculosis and Rifampin resistance by use of on-demand, near-patient technology. J Clin Microbio 48:229–237. https://doi.org/10.1128/JCM.01463-09

  56. Watterson SA, Wilson SM, Yates MD, Drobniewski FA (1998) Comparison of three molecular assays for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. J Clin Microbiol 36:1969–1973. https://doi.org/10.1128/JCM.36.7.1969-1973.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J, Banada PM, Deshpande S, Shenai S, Gall A, Glass J, Krieswirth B, Schumacher SG, Nabeta P, Tukvadze N, Rodrigues C, Skrahina A, Tagliani E, Cirillo DM, Davidow A, Denkinger CM, Persing D, Kwiatkowski R, Jones M, Alland D (2017) The New Xpert MTB/RIF Ultra: Improving detection of Mycobacterium tuberculosis and resistance to Rifampin in an assay suitable for point-of-care testing. mBio 8(4):e00812–e00817. https://doi.org/10.1128/mBio.00812-17

  58. Osei Sekyere J, Maphalala N, Malinga LA, Mbelle NM, Maningi NE (2019) A Comparative evaluation of the new genexpert MTB/RIF ultra and other rapid diagnostic assays for detecting tuberculosis in pulmonary and extra pulmonary specimens. Sci Rep 9:16587. https://doi.org/10.1038/s41598-019-53086-5

  59. World Health Organization (2008) Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB): policy statement. Geneva.

    Google Scholar 

  60. Report for WHO (2015) Non-inferiority evaluation of Nipro NTM+MDRTB and Hain GenoTypeMTBDRplus V2 line probe assays. Geneva

    Google Scholar 

  61. Cloud JL, Conville PS, Croft A, Harmsen D, Witebsky FG, Carroll KC (2004) Evaluation of partial 16S ribosomal DNA sequencing for identification of Nocardia species by using the MicroSeq 500 system with an expanded database. J Clin Microbiol 42:578–584. https://doi.org/10.1128/JCM.42.2.578-584.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hall L, Doerr KA, Wohlfiel SL, Roberts GD (2003) Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol 41:1447–1453. https://doi.org/10.1128/JCM.41.4.1447-1453.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dobner P, Feldmann K, Rifai M, Loscher T, Rinder H (1996) Rapid identification of mycobacterial species by PCR amplification of hypervariable 16S rRNA gene promoter region. J Clin Microbiol 34:866–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Han XY, Pham AS, Tarrand JJ, Sood PK, Luthra R (2002) Rapid and accurate identification of mycobacteria by sequencing hypervariable regions of the 16S ribosomal RNA gene. Am J Clin Pathol 118:796–801. https://doi.org/10.1309/HN44-XQYM-JMAQ-2EDL

    Article  CAS  PubMed  Google Scholar 

  65. Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC (1996) Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J Clin Microbiol 34:296–303. https://doi.org/10.1128/jcm.34.2.296-303.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Somoskovi A, Song Q, Mester J, Tanner C, Hale YM, Parsons LM, Salfinger M (2003) Use of molecular methods to identify the Mycobacterium tuberculosis complex (MTBC) and other mycobacterial species and to detect rifampin resistance in MTBC isolates following growth detection with the BACTEC MGIT 960 system. J Clin Microbiol 41:2822–2826. https://doi.org/10.1128/JCM.41.7.2822-2826.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Viader-Salvado JM, Luna-Aguirre CM, Reyes-Ruiz JM, Valdez-Leal R, Bosque-Moncayo MA, Tijerina-Menchaca R, Guerrero-Olazaran M (2003) Frequency of mutations in rpoB and codons 315 and 463 of katG in rifampin- and/or isoniazid-resistant Mycobacterium tuberculosis isolates from northeast Mexico. Microb Drug Resist 9:33–38. https://doi.org/10.1089/107662903764736328

    Article  CAS  PubMed  Google Scholar 

  68. Pham TH, Peter J, Mello FCQ, Parraga T, Lan NTN, Nabeta P, Valli E, Caceres T, Dheda K, Hillemann DSE, D, Gray CM, Perkins MD, (2018) Performance of the TB-LAMP diagnostic assay in reference laboratories: Results from a multicentre study. Int J Infect Dis 68:44–49. https://doi.org/10.1016/j.ijid.2018.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  69. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O’Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD (2010) Rapid molecular detection of tuberculosis and rifampicin resistance. N Engl J Med 363(11):1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vassall A, van Kampen S, Sohn H, Michael JS, John KR, den Boon S, Davis JL, Whitelaw A, Nicol MP, Gler MT, Khaliqov A, Zamudio C, Perkins MD, Boehme CC, Cobeiens F (2011) Rapid diagnosis of tuberculosis with the Xpert MTB/RIF assay in high burden countries: a cost-effectiveness analysis. PLoS Med 2011 8(11) e1001120. https://doi.org/10.1371/journal.pmed.1001120

  71. World Health Organization (2016) The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. Geneva

    Google Scholar 

  72. Gingeras TR, Ghandour G, Wang E, Berno A, Small PM, Drobniewski F, Alland D, Desmond E, Holodniy M, Drenkow J (1998) Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res 8(5):435–448. https://doi.org/10.1101/gr.8.5.435

    Article  CAS  PubMed  Google Scholar 

  73. Cabibbe AM, Miotto P, Moure R, Alcaide F, Feuerriegel S, Pozzi G, Nikolayevskyy V, Drobniewski F, Niemann S, Reither K, Cirillo DM, TM-REST Consortium, TB-CHILD Consortium (2015) Lab-on-chip-based platform for fast molecular diagnosis of multidrug-resistant tuberculosis. J Clin Microbiol 53(12):3876–3880. https://doi.org/10.1128/JCM.01824-15

  74. Baptista PV, Koziol-Montewka M, Paluch-Oles J, Doria G, Franco R (2006) Gold-nanoparticle-probe–based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin Chem 52:1433–1434. https://doi.org/10.1373/clinchem.2005.065391

    Article  CAS  PubMed  Google Scholar 

  75. Tsai T-T, Huang C-Y, Chen C-A, Shen S-W, Wang M-C, Cheng C-M, Chen C-F (2017) Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device. ACS Sensors 2:1345–1354

    Article  CAS  PubMed  Google Scholar 

  76. Hsieh S-C, Chang C-C, Lu C-C, Wei C-F, Lin C-S, Lai H-C, Lin C-W (2012) Rapid identification of Mycobacterium tuberculosis infection by a new array format-based surface plasmon resonance method. Nanoscale Res Lett 7:180. https://doi.org/10.1186/1556-276X-7-180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qin D, He X, Wang K, Zhao XJ, Tan W, Chen J (2007) fluorescent nanoparticle-based indirect immunoflfluorescence microscopy for detection of Mycobacterium tuberculosis. J Biomed Biotechnol Article ID 89364. https://doi.org/10.1155/2007/89364

  78. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  PubMed  Google Scholar 

  79. Kaittanis C, Naser SA, Perez JM (2007) One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Letters 7:380–383. https://doi.org/10.1021/nl062553z

  80. Lee H, Sun E, Ham D, Weissleder R (2008) Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 14:869–874

    Article  PubMed  PubMed Central  Google Scholar 

  81. Perez JM, Josephson L, O’Loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816–820

    Article  CAS  PubMed  Google Scholar 

  82. Engström A, de la Torre TZG, Strømme M, Nilsson M, Herthnek D (2013) Detection of rifampicin resistance in Mycobacterium tuberculosis by padlock probes and magnetic nanobead-based readout. PLoS ONE 8:e62015

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  CAS  PubMed  Google Scholar 

  84. Gordillo-Marroquín C, Gómez-Velasco A, Sánchez-Pérez HJ, Pryg K, Shinners J, Murray N, Munoz-Jimenez SG, Bencomo-Alerm A, Gomez-Bustamante A, Jonapa-Gomez L, Enriquez-Rios N, Martin M, Romero-Sandoval N, Alocilja EC (2018) magnetic nanoparticle-based biosensing assay quantitatively enhances acid-fast bacilli count in paucibacillary pulmonary tuberculosis. Biosensors (Basel) 8(4):128. https://doi.org/10.3390/bios8040128

    Article  CAS  PubMed  Google Scholar 

  85. Liandris E, Gazouli M, Andreadou M, Sechi LA, Rosu V, Ikonomopoulos J (2011) Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS ONE 6(5):e20026. https://doi.org/10.1371/journal.pone.0020026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14(7):599–624. https://doi.org/10.1016/S0956-5663(99)00039-1

    Article  CAS  Google Scholar 

  87. Schmid RD, Scheller F (1989) Biosensors—applications in medicine, environmental protection and process control. GBF monographs, 13. Weinheim, Federal Republic of Germany: New York, NY, USA

    Google Scholar 

  88. Luong JH, Groom CA, Male KB (1991) The potential role of biosensors in the food and drink industries. Biosens Bioelectron 6(7):547–554. https://doi.org/10.1016/0956-5663(91)80018-s

    Article  CAS  PubMed  Google Scholar 

  89. Luong JH, Bouvrette P, Male KB (1997) Developments and applications of biosensors in food analysis. Trends Biotechnol 15(9):369–377. https://doi.org/10.1016/S0167-7799(97)01071-8

    Article  CAS  PubMed  Google Scholar 

  90. Feng P (1992) Commercial assay systems for detecting foodborne Salmonella: a review. J Food Prot 55:927–934

    Article  CAS  PubMed  Google Scholar 

  91. Deshpande SS, Rocco RM (1994) Biosensors and their potential use in food quality-control. Food Technol 48(6):146–150

    CAS  Google Scholar 

  92. Alvarez-Icaza M, Bilitewski U (1993) Mass production of biosensors. Anal Chem 65(11):525A–533A

    Google Scholar 

  93. Kim RR, Mulchandani A, Zhou W (1996) Biosensor and chemical sensor technology: process monitoring and control. J Am Chem Soc 118(33):7872. https://doi.org/10.1021/ja9656356

    Article  Google Scholar 

  94. Kress-Rogers E (1996) Biosensors and electronic noses for practical applications. In: Kress-Rogers E (ed) Handbook of biosensors and electronic noses: medicine, food, and the environment, 1st ed. CRC Press

    Google Scholar 

  95. Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42(2):193–209

    Article  CAS  PubMed  Google Scholar 

  96. Blum LJ (1997) Bio-and chemi-luminescent sensors. World Sci Publ Co Pte Ltd Bio- and Chemi-Lumines Anal Immobilized Reagents. https://doi.org/10.1142/3317

    Article  Google Scholar 

  97. Martinkova P, Kostelnik A, Valek T, Pohanka M (2017) Main streams in the construction of biosensors and their applications. Int J Electrochem Sci 12:7386–7403. https://doi.org/10.20964/2017.08.02

    Article  CAS  Google Scholar 

  98. Bueno J (2014) Biosensors in antimicrobial drug discovery: since biology until screening platforms. J Microb Biochem Technol S 10–002. https://doi.org/10.4172/1948-5948.S10-002

  99. Srivastava SK, van Rijn CJ, Jongsma MA (2016) Biosensor-based detection of tuberculosis. RSC Adv 6(22):17759–17771

    CAS  Google Scholar 

  100. Pavlou AK, Magan N, Jones JM, Brown J, Klatser P, Turner AP (2004) Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. Biosens Bioelectron 20(3):538–544. https://doi.org/10.1016/j.bios.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  101. Das M, Dhand C, Sumana G, Srivastava AK, Vijayan N, Nagarajan R, Malhotra BD (2011) Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection. Appl Phys Lett 99(14):143702. https://doi.org/10.1063/1.3645618

    Article  CAS  Google Scholar 

  102. Pariwono AM, Lo T, Lim CS, Wang SX, Chan YW (2007) Rapid tuberculosis detection technique for on-site patient screening. J Biomed Pharm Eng 1:27–33

    Google Scholar 

  103. Mukundan H, Kumar S, Price DN, Ray SM, Lee Y, Min S, Eum S, Kubicek-Sutherland J, Resnick JM, Grace WK, Anderson AS, Hwang SH, Cho SN, Via LE, Barry III C, Sakamuri R, Swanson BI Rapid detection of Mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis (Edinb) 92(5):407–416. https://doi.org/10.1016/j.tube.2012.05.009

  104. Duman M, Piskin E (2010) Detection of Mycobacterium tuberculosis complex and Mycobacterium gordonae on the same portable surface plasmon resonance sensor. Biosens Bioelectron 26:908–912

    Article  CAS  PubMed  Google Scholar 

  105. Prabhakar N, Arora K, Arya SK, Solanki PR, Iwamoto M, Singh H, Malhotra BD (2008) Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst 133(11):1587–1592. https://doi.org/10.1039/b808225a

  106. Lee J, Kim J, Ahmed SR, Zhou H, Kim J-M, Lee J (2014) Plasmon-induced photoluminescence immunoassay for tuberculosis monitoring using gold-nanoparticle-decorated graphene. ACS Appl Mater Interfaces 6(23):21380–21388. https://doi.org/10.1021/am506389m

    Article  CAS  PubMed  Google Scholar 

  107. McNerney R, Wondafrash BA, Amena K, Tesfaye A, McCash EM, Murray NJ (2010) Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough. BMC Infect Dis 10:161. https://doi.org/10.1186/1471-2334-10-161

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hiatt AL, Cliffel DE (2012) Real-time recognition of Mycobacterium tuberculosis and lipoarabinomannan using the quartz crystal microbalance. Sens Actuators B Chem 174:245–252. https://doi.org/10.1016/j.snb.2012.06.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ren J, He F, Yi S, Cui X (2008) A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosens Bioelectron 24(3):403–409. https://doi.org/10.1016/j.bios.2008.04.018

    Article  CAS  PubMed  Google Scholar 

  110. He F, Zhao J, Zhang L, Su X (2003) A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta 59(5):935–941. https://doi.org/10.1016/S0039-9140(02)00643-4

    Article  CAS  PubMed  Google Scholar 

  111. Pang P, Cai Q, Yao S, Grimes CA (2008) The detection of Mycobacterium tuberculosis in sputum sample based on a wireless magnetoelastic-sensing device. Talanta 76(2):360–364. https://doi.org/10.1016/j.talanta.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  112. Liong M, Hoang AN, Chung J, Gural N, Ford CB, Min C, Shah RR, Ahmad R, Fernandez-Suarez M, Fortune SM, Toner M, Lee H, Weissleder R (2013) Magnetic barcode assay for genetic detection of pathogens. Nat Commun 4:1752. https://doi.org/10.1038/ncomms2745

    Article  CAS  PubMed  Google Scholar 

  113. Koch R (1967) The current state of the struggle against Tuberculosis. In: Nobel lectures, physiology or medicine 1901–1921, Elsevier Publishing Company, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Mali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mali, S., Devnikar, A.V., Natarajan, A. (2023). Laboratory Diagnosis of Tuberculosis. In: Rezaei, N. (eds) Tuberculosis. Integrated Science, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-15955-8_6

Download citation

Publish with us

Policies and ethics