Skip to main content

Optimizing Racing Wheelchair Design Through Coupled Biomechanical-Mechanical Simulation

  • Conference paper
  • First Online:
Advances on Mechanics, Design Engineering and Manufacturing IV (JCM 2022)

Abstract

The purpose of this study is to optimize the design of racing wheelchairs to improve the performances of the athletes. The design of manual wheelchair allows athletes to express their full potential. Two models have then been created. The first one to compute the optimal position of the shoulder of the athlete relatively to the wheelchair to obtain the maximal wheelchair speed for long distance races. The second one was designed to represent the 100 m race and to optimize the pelvis position of the athlete on the wheelchair to reduce the time to reach 100 m. Our model quantified the maximal speed reached by the wheelchair to 32 km/h and the optimal time to 14.35 s. To obtain these performances, the athlete would be in a lying position, with the vertical position of the pelvis centre close to the vertical position of the shoulder. The second program also returned the optimal speed curve of the wheelchair during the 100 m race. The coaches could then use the optimal acceleration curve found in this study to match the acceleration of the wheelchair of their athlete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bundon, A., Mason, B.S., Goosey-Tolfrey, V.L.: Expert users’ perceptions of racing wheelchair design and setup: the knowns, unknowns, and next steps. Adapt. Phys. Act. Q. 34(2), 141–61 (2017). https://journals.humankinetics.com/view/journals/apaq/34/2/article-p141.xml

  2. Mason, B.S., van der Woude, L.H.V., Goosey-Tolfrey, V.L.: The ergonomics of wheelchair configuration for optimal performance in the wheelchair court sports. Sport. Med. 43(1), 23–38 (2013). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873125920&doi=10.1007%2Fs40279-012-0005-x&partnerID=40&md5=f984184907b46f0696f61c0c3cfad544

  3. MacLeish, M.S., Cooper, R.A., Harralson, J., Ster, J.F.: Design of a composite monocoque frame racing wheelchair. J. Rehabil. Res. Dev. 30(2), 233–249 (1993)

    Google Scholar 

  4. Cooper, R.A.: Wheelchair racing sports science: a review. J. Rehabil. Res. Dev. 27(3), 295–312 (1990)

    Article  Google Scholar 

  5. Cooper, R.A., et al.: Engineering and technology in wheelchair sport. Phys. Med. Rehabil. Clin. N. Am. 29(2), 347–369 (2018)

    Article  Google Scholar 

  6. Mâsse, L.C., Lamontagne, M., O’Riain, M.D.: Biomechanical analysis of wheelchair propulsion for various seating positions. J. Rehabil. Res. Dev. 29(3), 12–28 (1992). https://doi.org/10.1682/jrrd.1992.07.0012

    Article  Google Scholar 

  7. Hybois, S.: Approche numérique pour l’optimisation personnalisée des réglages d’un fauteuil roulant manuel. Arts et Metiers Paristech - Campus de Paris, Institut de Biomécanique Humaine Georges Charpak (2019)

    Google Scholar 

  8. Morrow, D.A., Guo, L.Y., Zhao, K.D., Su, F.C., An, K.N.: A 2-D model of wheelchair propulsion. Disabil. Rehabil. 25(4–5), 192–196 (2003)

    Article  Google Scholar 

  9. Sauret, C., Loisel, J., Poulet, Y., Bascou, J.: Performance analysis of wheelchair racing using IMU sensors. In: 19ème congrès ACAPS, Montpellier, France, 27–29 October 2021 (2021)

    Google Scholar 

  10. Masson, G.: Amélioration des performances d’athlètes en fauteuil roulant d’athlétisme à partir d’une configuration optimale (2015)

    Google Scholar 

  11. Samozino, P., et al.: A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sport. 26(6), 648–658 (2016)

    Article  Google Scholar 

  12. Mayer, F., Horstmann, T., Rocker, K., Heitkamp, H.C., Dickhuth, H.H.: Normal values of isokinetic maximum strength, the strength/velocity curve, and the angle at peak torque of an degrees of freedom in the shoulder. Int J Sports Med. 15(Suppl. 1), 19–25 (1994)

    Article  Google Scholar 

  13. Provins, K.A., Salter, N.: Maximum torque exerted about the elbow joint. J. Appl. Physiol. 7(4), 393–398 (1955)

    Article  Google Scholar 

  14. Colson, S., Pousson, M., Martin, A., Van Hoecke, J.: Isokinetic elbow flexion and coactivation following eccentric training. J. Electromyogr. Kinesiol. 9(1), 13–20 (1999)

    Article  Google Scholar 

  15. Chénier, F., Pelland-Leblanc, J.-P., Parrinello, A., Marquis, E., Rancourt, D.: A high sample rate, wireless instrumented wheel for measuring 3D pushrim kinetics of a racing wheelchair. Med. Eng. Phys. 87, 30–37 (2021). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096702517&doi=10.1016%2Fj.medengphy.2020.11.008&partnerID=40&md5=f9f0053e65b1fad0b7a61994a2cdf436

  16. Bourgain, M., Hybois, S., Thoreux, P., Rouillon, O., Rouch, P., Sauret, C.: Effect of shoulder model complexity in upper-body kinematics analysis of the golf swing. J. Biomech. 75, 154–158 (2018). https://doi.org/10.1016/j.jbiomech.2018.04.025

    Article  Google Scholar 

  17. Kirby, R.L., Kirby, R.L., Smith, C., Seaman, R., Macleod, D.A., Parker, K.: The manual wheelchair wheelie: A review of our current understanding of an important motor skill. Disabil. Rehabil. Assist. Technol. 1(1–2), 119–127 (2006). https://doi.org/10.1080/09638280500167605

    Article  Google Scholar 

Download references

Acknowledgments

This work has benefited funds managed by the National Research Agency (ANR) under the “Future Investment 3” plan within the framework of the “Priority Sport Research Program of Very High Performance” bearing the reference ANR–19-STHP-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Landon .

Editor information

Editors and Affiliations

Annex

Annex

The formulas used to compute the kinematic parameters of the model are presented in this annex. This allowed us to find the shoulders and elbow angles.

The first step to calculate the kinematics parameters of the Long-distance model was based on the current position of the shoulder centre (\({X}_{shoulder}\) and \({Y}_{shoulder}\) respectively the horizontal and vertical position):

$$ \begin{array}{*{20}c} {inc = \arctan \left( {\frac{{Y_{shoulder} }}{{X_{shoulder} }}} \right){;} \; D = \sqrt {(X_{shoulder}^2 + Y_{shoulder}^2 )} } \\ \end{array} $$

For the sprint model, the first step to compute the kinematic parameters was based on the dimension of the torso (\({L}_{torso}\)), the horizontal and vertical position of the pelvis (respectively \({X}_{pelvis}\) and \({Y}_{pelvis}\)), and \(\beta \), the angle between the torso and a horizontal line (figure attached).

$$ \begin{aligned} & X_{shoulder} { } = { }L_{torso} \cos \left( {\upbeta } \right) - X_{pelvis} {;} \; Y_{shoulder} = L_{torso} \sin \left( \beta \right) + { }Y_{pelvis} \\ & inc = \arctan \left( {\frac{{Y_{shoulder} }}{{X_{shoulder} }}} \right){;} \; D = \sqrt {{(X_{shoulder}}^{2} + {Y_{shoulder}}^{2} )} \\ \end{aligned} $$

Then, the next step was the same for both models. The parameters used were: \(\alpha \), the

$$ \begin{aligned} & \nu =\alpha +\frac{\pi }{2}-inc \\ &L=\sqrt{\left({R}_{mc}^{2}+{D}^{2}-2D{R}_{mc}\mathrm{cos}\left(\nu \right)\right)} \\ & \theta =-\mathrm{arccos}\left(\frac{{L}_{arm}^{2}+{L}_{forearm}^{2}-{L}^{2}}{2{L}_{arm}{L}_{forearm}}\right)\\ &\psi =-\mathrm{arctan}\left(\frac{{R}_{mc}\mathrm{sin}\left(\nu \right)}{D-{R}_{mc}\mathrm{cos}\left(\nu \right)}\right) \\ & \mu =-\mathrm{arccos}\left(\frac{{L}^{2}+{L}_{arm}^{2}-{L}_{forearm}^{2}}{2{L}_{arm}L}\right)+\psi \\ & \varphi =\mu +\theta\\ &\delta =inc+\mu -\beta \end{aligned} $$
figure a

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loiseau, A., Marsan, T., Navarro, P., Watier, B., Landon, Y. (2023). Optimizing Racing Wheelchair Design Through Coupled Biomechanical-Mechanical Simulation. In: Gerbino, S., Lanzotti, A., Martorelli, M., Mirálbes Buil, R., Rizzi, C., Roucoules, L. (eds) Advances on Mechanics, Design Engineering and Manufacturing IV. JCM 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-15928-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15928-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15927-5

  • Online ISBN: 978-3-031-15928-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics