Skip to main content

Polymeric Nanoparticles in Malaria

  • Chapter
  • First Online:
Malarial Drug Delivery Systems

Abstract

The major reason behind malaria becoming one of the most serious infectious diseases is the limitations of available antimalarial therapy. Drug resistance, poor water solubility, low bioavailability, toxicity due to drugs, etc. are some of those crucial issues. Further, the lack of innovations in terms of the discovery of antiparasitic agents in the last decade has generated the need for improving the available therapies by modifying their delivery. The loading of antimalarial drugs in biodegradable polymers to produce polymeric nanoparticles has been considered one of the novel strategies in this regard. These nanoparticle systems are set apart due to distinct characters like high drug encapsulation, reduction in toxicity, good biocompatibility, targeted delivery, etc. This chapter aims at highlighting polymeric nanoparticles for delivery of antimalarial drugs. It includes a discussion about the type of polymers used, preparation, and significant outcomes of some of the recent investigations. The last section of the chapter covered the polymeric nanoparticles containing a combination of antimalarial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costantino L, Boraschi D. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today. 2012;17(7–8):367–78.

    CAS  PubMed  Google Scholar 

  2. Holister P, Weener JW, Roman VC, Harper T. Nanoparticles. Technol White Papers. 2003;3:1–11.

    Google Scholar 

  3. Tiruwa RA. Review on nanoparticles – preparation and evaluation parameters, Indian. J Pharm Biol Res. 2016;4(2):27–31.

    CAS  Google Scholar 

  4. Crucho CI, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C. 2017;80:771–84.

    CAS  Google Scholar 

  5. Prajapati BG, Patel MM. Conventional and alternative pharmaceutical methods to improve oral bioavailability of lipophilic drugs. Asian J Pharm. 2007;1(1):1–8.

    Google Scholar 

  6. Castro KC, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: a review. Int J Polym Mater Polym Biomater. 2020;71(1):1–13.

    Google Scholar 

  7. Neha B, Ganesh B, Preeti K. Drug delivery to the brain using polymeric nanoparticles: a review. Int J Pharm Life Sci. 2013;2(3):107–32.

    Google Scholar 

  8. Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan SU. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials. 2020;10(10):1970.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Prajapati BG, Patel JK, Patel VM, Prajapati KV. The upcoming era of nanomedicine: a briefing. Drug Del Technol. 2008;8(4):46.

    Google Scholar 

  10. Jarai BM, Kolewe EL, Stillman ZS, Raman N, Fromen CA. Polymeric nanoparticles. In: Nanoparticles for biomedical applications. Elsevier; 2020. p. 303–24.

    Google Scholar 

  11. Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(2):271–99.

    PubMed  Google Scholar 

  12. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kotadiya N, Prajapati BG, Bhattacharya S. Atorvastatin calcium nanoparticles using solvent-anti-solvent precipitation method. e-J Sci Technol. 2016;11(4):1–10.

    Google Scholar 

  14. Vauthier C, Bouchemal KJ. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26(5):1025–58.

    CAS  PubMed  Google Scholar 

  15. Masood FJ. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2016;60:569–78.

    CAS  PubMed  Google Scholar 

  16. Indoria S, Singh V, Hsieh MF. Recent advances in theranostic polymeric nanoparticles for cancer treatment: a review. Int J Pharm. 2020;582:119314.

    CAS  PubMed  Google Scholar 

  17. Reddy YD, Innovation P. A brief review on polymeric nanoparticles for drug delivery and targeting. J Med Pharm Innov. 2015;2(7):19–32.

    CAS  Google Scholar 

  18. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, Durazzo A, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.

    PubMed  PubMed Central  Google Scholar 

  19. Brar SK, Verma M. Measurement of nanoparticles by light-scattering techniques. TrAC Trends Anal Chem. 2011;30(1):4–17.

    CAS  Google Scholar 

  20. Carvalho PM, Felício MR, Santos NC, Gonçalves S, Domingues MM. Application of light scattering techniques to nanoparticle characterization and development. Front Chem. 2018;25(6):237.

    Google Scholar 

  21. Stals PJ, Gillissen MA, Paffen TF, de Greef TF, Lindner P, Meijer EW, et al. Folding polymers with pendant hydrogen bonding motifs in water: the effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticles. Macromolecules. 2014;47(9):2947–54.

    CAS  Google Scholar 

  22. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–32.

    CAS  Google Scholar 

  23. Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3(5):409–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84.

    CAS  PubMed  Google Scholar 

  25. Herrero-Vanrell R, Molina-Martinez IT. PLA and PLGA microparticles for intravitreal drug delivery: an overview. J Drug Del Sci Technol. 2007;17(1):11–7.

    CAS  Google Scholar 

  26. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Khaled G, Hamada A, Maeda H. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 2003;63(13):3567–74.

    CAS  PubMed  Google Scholar 

  27. Craparo EF, Bondì ML. Application of polymeric nanoparticles in immunotherapy. Curr Opin Allergy Clin Immunol. 2012;12(6):658–64.

    CAS  PubMed  Google Scholar 

  28. Senthilnathan B, Ameerkhan H, Aswini S, Abirami M, Bharath T, Ajithkumar T, Maheswaran A. Review on various approaches on preparation, characterisation and applications of polymeric nanoparticles. World J Pharm Res. 2015;4(6):645–63.

    CAS  Google Scholar 

  29. Dadwal M, Solan D, Pradesh H. Polymeric nanoparticles as promising novel carriers for drug delivery: an overview. J Adv Pharm Educ Res. 2014;4(1):20–30.

    Google Scholar 

  30. Leyva-Gómez G, Piñón-Segundo E, Mendoza-Muñoz N, et al. Approaches in polymeric nanoparticles for vaginal drug delivery: a review of the state of the art. Int J Mol Sci. 2018;19(6):1549.

    PubMed  PubMed Central  Google Scholar 

  31. Artemisinin derivatives. In: Aronson JK, editor. Meyler’s side effects of drugs. 6th ed. Oxford: Elsevier; 2016. p. 701–10.

    Google Scholar 

  32. Esu EB, Effa EE, Opie ON, et al. Artemether for severe malaria. Cochrane Database Syst Rev. 2019;6(6):CD010678-CD010678.

    Google Scholar 

  33. Waller DG, Sampson AP. 51 – chemotherapy of infections. In: Waller DG, Sampson AP, editors. Medical pharmacology and therapeutics. 5th ed. Elsevier; 2018. p. 581–629.

    Google Scholar 

  34. Tayyab Ansari M, Arshad MS, Hussain A, et al. Improvement of solubility, dissolution and stability profile of artemether solid dispersions and self emulsified solid dispersions by solvent evaporation method. Pharm Dev Technol. 2018;23(10):1007–15.

    CAS  PubMed  Google Scholar 

  35. Talib S, Ahmed N, Khan D, et al. Chitosan-chondroitin based artemether loaded nanoparticles for transdermal drug delivery system. J Drug Del Sci Technol. 2021;61:102281.

    CAS  Google Scholar 

  36. Bhide AR, Surve DH, Guha S, et al. A sensitive RP-HPLC method for estimation of artemether from polymeric nanoparticles after pre-column acid treatment using UV-visible detector. J Liq Chromatogr Relat Technol. 2020;43(15–16):624–32.

    CAS  Google Scholar 

  37. Bhide AR, Jindal AB. Fabrication and evaluation of artemether loaded polymeric nanorods obtained by mechanical stretching of nanospheres. Int J Pharm. 2021;605:120820.

    CAS  PubMed  Google Scholar 

  38. Sidhaye AA, Bhuran KC, Zambare S, et al. Bio-inspired artemether-loaded human serum albumin nanoparticles for effective control of malaria-infected erythrocytes. Nanomedicine (Lond). 2016;11(21):2809–28.

    CAS  PubMed  Google Scholar 

  39. Bhadra D, Bhadra S, Jain NK. PEGylated peptide-based dendritic nanoparticulate systems for delivery of artemether. J Drug Del Sci Technol. 2005;15(1):65–73.

    CAS  Google Scholar 

  40. Boateng-Marfo Y, Dong Y, Ng WK, et al. Artemether-loaded Zein nanoparticles: an innovative intravenous dosage form for the management of severe malaria. Int J Mol Sci. 2021;22(3):1141.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Souza ACM, Mosqueira VCF, Silveira APA, et al. Reduced cardiotoxicity and increased oral efficacy of artemether polymeric nanocapsules in plasmodium berghei-infected mice. Parasitology. 2018;145(8):1075–83.

    CAS  PubMed  Google Scholar 

  42. Dauda K, Busari Z, Morenikeji O, et al. Poly (D, L-lactic-co-glycolic acid)-based artesunate nanoparticles: formulation, antimalarial and toxicity assessments. J Zhejiang Univ Sci B. 2017;18(11):977–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nguyen HT, Tran TH, Kim JO, et al. Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-D, L-lactide-co-glycolide (PLGA) nanoparticles. Arch Pharm Res. 2015;38(5):716–24.

    CAS  PubMed  Google Scholar 

  44. Chadha R, Gupta S, Pathak NJDD, et al. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies. Drug Dev Ind Pharm. 2012;38(12):1538–46.

    CAS  PubMed  Google Scholar 

  45. Liu R, Yu X, Su C, et al. Nanoparticle delivery of artesunate enhances the anti-tumor efficiency by activating mitochondria-mediated cell apoptosis. Nanoscale Res Lett. 2017;12(1):1–10.

    PubMed  PubMed Central  Google Scholar 

  46. Tu Y. Chapter 22: Clinical studies of Dihydroartemisinin. In: Tu Y, editor. From Artemisia Annua L. to Artemisinins. Academic; 2017. p. 335–49.

    Google Scholar 

  47. van der Pluijm RW, Imwong M, Chau NH, et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect Dis. 2019;19(9):952–61.

    PubMed  PubMed Central  Google Scholar 

  48. Ansari MT, Batty KT, Iqbal I, et al. Improving the solubility and bioavailability of dihydroartemisinin by solid dispersions and inclusion complexes. Arch Pharm Res. 2011;34(5):757.

    CAS  PubMed  Google Scholar 

  49. Dai L, Wang L, Deng L, et al. Novel multiarm polyethylene glycol-Dihydroartemisinin conjugates enhancing therapeutic efficacy in non-small-cell lung cancer. Sci Rep. 2014;4(1):5871.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang D, Li H, Gu J, et al. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions. J Pharm Biomed Anal. 2013;83:141–8.

    CAS  PubMed  Google Scholar 

  51. Wang L, Wang Y, Wang X, et al. Encapsulation of low lipophilic and slightly water-soluble dihydroartemisinin in PLGA nanoparticles with phospholipid to enhance encapsulation efficiency and in vitro bioactivity. J Microencapsul. 2016;33(1):43–52.

    CAS  PubMed  Google Scholar 

  52. Nguyen CN, Tran BN, Thi HN, et al. Physical absorption of folic acid and chitosan on Dihydroartemisinin-loaded poly-lactic-co-glycolic acid nanoparticles via electrostatic interaction for their enhanced uptake and anticancer effect. J Nanomater. 2019;2019:6808530.

    Google Scholar 

  53. Liu K, Dai L, Li C, et al. Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol-dihydroartemisinin conjugate. Sci Rep. 2016;6:29461.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhujbal SV, Pathak V, Zemlyanov DY, et al. Physical stability and dissolution of Lumefantrine amorphous solid dispersions produced by spray anti-solvent precipitation. J Pharm Sci. 2021;110(6):2423–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vardanyan R, Hruby V. Chapter 35: drugs for treating protozoan infections. In: Vardanyan R, Hruby V, editors. Synthesis of best-seller drugs. Boston: Academic; 2016. p. 737–48.

    Google Scholar 

  56. Edwards G, Biagini GA. Resisting resistance: dealing with the irrepressible problem of malaria. Br J Clin Pharmacol. 2006;61(6):690–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah R, Soni T, Shah U, et al. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity. J Biomater Sci Polym Ed. 2021;32(7):833–57.

    CAS  PubMed  Google Scholar 

  58. Ristroph KD, Ott JA, Issah LA, et al. Reversible pH-driven flocculation of amphiphilic polyelectrolyte-coated nanoparticles for rapid filtration and concentration. ACS Appl Nano Mater. 2021;4(9):8690–8.

    CAS  Google Scholar 

  59. Feng J, Markwalter CE, Tian C, et al. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J Transl Med. 2019;17(1):200.

    PubMed  PubMed Central  Google Scholar 

  60. Feng J, Zhang Y, McManus SA, et al. Amorphous nanoparticles by self-assembly: processing for controlled release of hydrophobic molecules. Soft Matter. 2019;15(11):2400–10.

    CAS  PubMed  Google Scholar 

  61. Sethuraman V, Janakiraman K, Krishnaswami V, et al. pH responsive delivery of lumefantrine with calcium phosphate nanoparticles loaded lipidic cubosomes for the site specific treatment of lung cancer. Chem Phys Lipids. 2019;224:104763.

    CAS  PubMed  Google Scholar 

  62. Alven S, Aderibigbe B. Combination therapy strategies for the treatment of malaria. Molecules. 2019;24(19):3601.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nosten F, Brasseur P. Combination therapy for malaria: the way forward? Drugs. 2002;62(9):1315–29.

    CAS  PubMed  Google Scholar 

  64. van der Pluijm RW, Tripura R, Hoglund RM, et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet. 2020;395(10233):1345–60.

    PubMed  PubMed Central  Google Scholar 

  65. Plowe CV. Combination therapy for malaria: Mission accomplished? Clin Infect Dis. 2007;44(8):1075–7.

    CAS  PubMed  Google Scholar 

  66. Pousibet-Puerto J, Salas-Coronas J, Sánchez-Crespo A, et al. Impact of using artemisinin-based combination therapy (ACT) in the treatment of uncomplicated malaria from Plasmodium falciparum in a non-endemic zone. Malar J. 2016;15(1):339.

    PubMed  PubMed Central  Google Scholar 

  67. Maiga FO, Wele M, Toure SM, et al. Artemisinin-based combination therapy for uncomplicated Plasmodium falciparum malaria in Mali: a systematic review and meta-analysis. Malar J. 2021;20(1):356.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mavoko HM, Nabasumba C, da Luz RI, et al. Efficacy and safety of re-treatment with the same artemisinin-based combination treatment (ACT) compared with an alternative ACT and quinine plus clindamycin after failure of first-line recommended ACT (QUINACT): a bicentre, open-label, phase 3, randomised controlled trial. Lancet Glob Health. 2017;5(1):e60–8.

    PubMed  Google Scholar 

  69. Thakkar MSB. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res. 2016;6(4):414–25.

    CAS  PubMed  Google Scholar 

  70. Neves Borgheti-Cardoso L, San Anselmo M, Lantero E, et al. Promising nanomaterials in the fight against malaria. J Mater Chem B. 2020;8(41):9428–48.

    CAS  PubMed  Google Scholar 

  71. Kojom Foko LP, Eya’ane Meva F, Eboumbou Moukoko CE, et al. A systematic review on anti-malarial drug discovery and antiplasmodial potential of green synthesis mediated metal nanoparticles: overview, challenges and future perspectives. Malar J. 2019;18(1):337.

    PubMed  PubMed Central  Google Scholar 

  72. Kumar S, Singh RK, Sharma R, et al. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur J Pharm Sci. 2015;66:123–37.

    CAS  PubMed  Google Scholar 

  73. Medhi H, Maity S, Suthram N, et al. Hollow mesoporous polymer capsules with Dihydroartemisinin and Chloroquine diphosphate for knocking down Plasmodium falciparum infection. Biomed Phys Eng Express. 2018;4(3):035006.

    Google Scholar 

  74. Oyeyemi O, Morenkeji O, Afolayan F, et al. Curcumin-Artesunate based polymeric nanoparticle; Antiplasmodial and toxicological evaluation in murine model. Front Pharmacol. 2018;9:562.

    PubMed  PubMed Central  Google Scholar 

  75. Ali SW, Mangrio FA, Li F, et al. Co-delivery of artemether and piperine via core-shell microparticles for enhanced sustained release. J Drug Del Sci Technol. 2021;63:102505.

    CAS  Google Scholar 

  76. Pawar S, Shende P. 22 factorial design-based biocompatible microneedle arrays containing artemether co-loaded with lumefantrine nanoparticles for transepidermal delivery. Biomed Microdevices. 2020;22(1):19.

    CAS  PubMed  Google Scholar 

  77. Shakeel K, Raisuddin S, Ali S, et al. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J Liposome Res. 2019;29(1):35–43.

    CAS  PubMed  Google Scholar 

  78. Jawahar N, Krishna B, Vineeta S. Co-delivery of chloroquine phosphate and azithromycin nanoparticles to overcome drug resistance in malaria through intracellular targeting. J Pharm Sci Res. 2019;11(1):33–40.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paliwal, H. et al. (2023). Polymeric Nanoparticles in Malaria. In: Shegokar, R., Pathak, Y. (eds) Malarial Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-15848-3_5

Download citation

Publish with us

Policies and ethics