Skip to main content

Denoising Architecture for Unsupervised Anomaly Detection in Time-Series

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2022)

Abstract

Anomalies in time-series provide insights of critical scenarios across a range of industries, from banking and aerospace to information technology, security, and medicine. However, identifying anomalies in time-series data is particularly challenging due to the imprecise definition of anomalies, the frequent absence of labels, and the enormously complex temporal correlations present in such data. The LSTM Autoencoder is an Encoder-Decoder scheme for Anomaly Detection based on Long Short Term Memory Networks that learns to reconstruct time-series behavior and then uses reconstruction error to identify abnormalities. We introduce the Denoising Architecture as a complement to this LSTM Encoder-Decoder model and investigate its effect on real-world as well as artificially generated datasets. We demonstrate that the proposed architecture increases both the accuracy and the training speed, thereby, making the LSTM Autoencoder more efficient for unsupervised anomaly detection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Yahoo S5 Dataset can be requested here: https://webscope.sandbox.yahoo.com/catalog.php?datatype=s &did=70.

References

  1. Amer, M., Goldstein, M., Abdennadher, S.: Enhancing one-class support vector machines for unsupervised anomaly detection. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, ODD 2013, pp. 8–15. Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2500853.2500857

  2. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lecture on IE, vol. 2, pp. 1–18 (2015)

    Google Scholar 

  3. Cao, V.L., Nicolau, M., McDermott, J.: One-class classification for anomaly detection with kernel density estimation and genetic programming. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_1

    Chapter  Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41, 1–58 (2009). https://doi.org/10.1145/1541880.1541882

    Article  Google Scholar 

  5. Douglas, H.: Identification of Outliers, vol. 11. Springer, Dordrecht (1980). https://doi.org/10.1007/978-94-015-3994-4

  6. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning. Pattern Recog. 58, 121–134 (2016). https://doi.org/10.1016/j.patcog.2016.03.028, https://www.sciencedirect.com/science/article/pii/S0031320316300267

  7. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep learning for time series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Fontugne, R., Borgnat, P., Abry, P., Fukuda, K.: MAWILab: combining diverse anomaly detectors for automated anomaly labeling and performance benchmarking, p. 8, November 2010. https://doi.org/10.1145/1921168.1921179

  9. Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A., Veeramachaneni, K.: TadGAN: time series anomaly detection using generative adversarial networks, September 2020

    Google Scholar 

  10. Knorn, F., Leith, D.: Adaptive Kalman filtering for anomaly detection in software appliances, pp. 1–6, May 2008. https://doi.org/10.1109/INFOCOM.2008.4544581

  11. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Clust. Comput. 22(1), 949–961 (2017). https://doi.org/10.1007/s10586-017-1117-8

    Article  Google Scholar 

  12. Laptev, N., Amizadeh, S., Flint, I.: Generic and scalable framework for automated time-series anomaly detection. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2015, pp. 1939–1947. Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2783258.2788611

  13. Laxhammar, R., Falkman, G., Sviestins, E.: Anomaly detection in sea traffic - a comparison of the gaussian mixture model and the kernel density estimator. In: 2009 12th International Conference on Information Fusion, pp. 756–763 (2009)

    Google Scholar 

  14. Li, D., Chen, D., Jin, B., Shi, L., Goh, J., Ng, S.-K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11730, pp. 703–716. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30490-4_56

    Chapter  Google Scholar 

  15. Liu, D., et al.: Opprentice: towards practical and automatic anomaly detection through machine learning. In: Proceedings of the 2015 Internet Measurement Conference (2015)

    Google Scholar 

  16. Lu, W., Ghorbani, A.A.: Network anomaly detection based on wavelet analysis. EURASIP J. Adv. Sig. Process. 2009(1), 1–16 (2009). https://doi.org/10.1155/2009/837601

    Article  MATH  Google Scholar 

  17. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.: LSTM-based encoder-decoder for multi-sensor anomaly detection, July 2016

    Google Scholar 

  18. Münz, G., Li, S., Carle, G.: Traffic anomaly detection using kmeans clustering. In: In GI/ITG Workshop MMBnet (2007)

    Google Scholar 

  19. Pincombe, B.: Anomaly detection in time series of graphs using ARMA processes. ASOR Bull. 24, 2 (2005)

    Google Scholar 

  20. Qiu, J., Du, Q., Qian, C.: KPI-TSAD: a time-series anomaly detector for KPI monitoring in cloud applications. Symmetry 11, 1350 (2019). https://doi.org/10.3390/sym11111350

    Article  Google Scholar 

  21. Shanbhag, S., Wolf, T.: Accurate anomaly detection through parallelism. IEEE Netw. 23(1), 22–28 (2009). https://doi.org/10.1109/MNET.2009.4804320

    Article  Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Yaacob, A.H., Tan, I.K.T., Chien, S.F., Tan, H.: Arima based network anomaly detection. In: 2010 2nd International Conference on Communication Software and Networks, pp. 205–209 (2010)

    Google Scholar 

  24. Yoon, J., Jarrett, D., van der Schaar, M.: Time-series generative adversarial networks, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf

  25. Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: BeatGAN: anomalous rhythm detection using adversarially generated time series. In: International Joint Conferences on Artificial Intelligence Organization, pp. 4433–4439, August 2019. https://doi.org/10.24963/ijcai.2019/616

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wadie Skaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skaf, W., Horváth, T. (2022). Denoising Architecture for Unsupervised Anomaly Detection in Time-Series. In: Chiusano, S., et al. New Trends in Database and Information Systems. ADBIS 2022. Communications in Computer and Information Science, vol 1652. Springer, Cham. https://doi.org/10.1007/978-3-031-15743-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15743-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15742-4

  • Online ISBN: 978-3-031-15743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics