Skip to main content

Chest and Lung Imaging in Preterms and Neonates

  • Chapter
  • First Online:
Imaging in Neonates

Abstract

A wide variety of chest and lung problems in neonates require imaging investigations. The main modality is chest radiography supplemented by chest/lung ultrasound, CT, MR, and sometimes fluoroscopy. The ALARA principle is indispensable when imaging this particular young and radiation sensitive age group with ionizing radiation. The chapter will present the principles of the respective imaging modalities used, discuss the imaging approach for chest and lung diseases in preterm and term neonates, and will illustrate the imaging findings with respective figures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission. European guidelines on quality criteria for diagnostic radiographic images in pediatrics. 1996. https://www.sprmn.pt/pdf/EuropeanGuidelinesEur16261.pdf. Accessed 3 Oct 2021.

  2. Don S, Macdougall R, Strauss K, Moore QT, Goske MJ, Cohen M, et al. Image gently campaign back to basics initiative: ten steps to help manage radiation dose in pediatric digital radiography. AJR Am J Roentgenol. 2013;200(5):W431–6. https://doi.org/10.2214/AJR.12.9895.

    Article  PubMed  Google Scholar 

  3. European Commission. European guidelines on DRLs for pediatric imaging. 2016. http://www.eurosafeimaging.org/wp/wp-content/uploads/2014/02/European-Guidelines-on-DRLs-for-Paediatric-Imaging_Revised_18-July-2016_clean.pdf. Accessed 3 Oct 2021.

  4. Mothiram U, Brennan PC, Lewis SJ, Moran B, Robinson J. Digital radiography exposure indices: a review. J Med Radiat Sci. 2014;61(2):112–8. https://doi.org/10.1002/jmrs.49.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Riccabona M. Ultrasound of the chest. In: Riccabona M, editor. Pediatric ultrasound. 2nd ed. New York: Springer International Publishing; 2020. p. 231–61.

    Chapter  Google Scholar 

  6. Nagy E, Tschauner S, Marterer R, Riedl R, Sorantin E. Chest CTA in children younger than two years - a retrospective comparison of three contrast injection protocols. Sci Rep. 2019;9(1):18109. https://doi.org/10.1038/s41598-019-54498-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirsch FW, Sorge I, Vogel-Claussen J, Roth C, Gräfe D, Päts A, et al. The current status and further prospects for lung magnetic resonance imaging in pediatric radiology. Pediatr Radiol. 2020;50(5):734–49. https://doi.org/10.1007/s00247-019-04594-z.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rehman S, Bacha D. Embryology, pulmonary. Treasure Island, FL: StatPearls Publishing; 2020.

    Google Scholar 

  9. Blank DA, Kamlin COF, Rogerson SR, Fox LM, Lorenz L, Kane SC, et al. Lung ultrasound immediately after birth to describe normal neonatal transition: an observational study. Arch Dis Child Fetal Neonatal Ed. 2018;103(2):F157–62. https://doi.org/10.1136/archdischild-2017-312818.

    Article  PubMed  Google Scholar 

  10. Sklair-Levy M, Agid R, Sella T, Strauss-Liviatan N, Bar-Ziv J. Age-related changes in CT attenuation of the thymus in children. Pediatr Radiol. 2000;30(8):566–9. https://doi.org/10.1007/s002470000245.

    Article  CAS  PubMed  Google Scholar 

  11. Edwards DK. The newborn infant with respiratory distress from medical causes. In: Hilton SW, Edwards DK, editors. Practical pediatric radiology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2006. p. 99–124.

    Google Scholar 

  12. Avni EF, Braude P, Pardou A, Matos C. Hyaline membrane disease in the newborn: diagnosis by ultrasound. Pediatr Radiol. 1990;20(3):143–6. https://doi.org/10.1007/BF02012957.

    Article  CAS  PubMed  Google Scholar 

  13. Brat R, Yousef N, Klifa R, Reynaud S, Shankar Aguilera S, De Luca D. Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr. 2015;169(8):e151797. https://doi.org/10.1001/jamapediatrics.2015.1797.

    Article  PubMed  Google Scholar 

  14. Odita JC. The significance of recurrent lung opacities in neonates on surfactant treatment for respiratory distress syndrome. Pediatr Radiol. 2001;31(2):87–91. https://doi.org/10.1007/s002470000377.

    Article  CAS  PubMed  Google Scholar 

  15. Dice JE, Bhatia J. Patent ductus arteriosus: an overview. J Pediatr Pharmacol Ther. 2007;12(3):138–46. https://doi.org/10.5863/1551-6776-12.3.138.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 2015;314(10):1039–1051. doi: https://doi.org/10.1001/jama.2015.10244.

  17. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357–68. https://doi.org/10.1056/NEJM196702162760701.

    Article  PubMed  Google Scholar 

  18. Agrons GA, Courtney SE, Stocker JT, Markowitz RI. From the archives of the AFIP: lung disease in premature neonates: radiologic-pathologic correlation. Radiographics. 2005;25(4):1047–73. https://doi.org/10.1148/rg.254055019.

    Article  PubMed  Google Scholar 

  19. Alonso-Ojembarrena A, Lubián-López SP. Lung ultrasound score as early predictor of bronchopulmonary dysplasia in very low birth weight infants. Pediatr Pulmonol. 2019;54(9):1404–9. https://doi.org/10.1002/ppul.24410.

    Article  PubMed  Google Scholar 

  20. Riskin A, Abend-Weinger M, Riskin-Mashiah S, Kugelman A, Bader D. Cesarean section, gestational age, and transient tachypnea of the newborn: timing is the key. Am J Perinatol. 2005;22(7):377–82. https://doi.org/10.1055/s-2005-872594.

    Article  PubMed  Google Scholar 

  21. Raju U, Sondhi V, Patnaik SK. Meconium aspiration syndrome: an insight. Med J Armed Forces India. 2010;66(2):152–7. https://doi.org/10.1016/S0377-1237(10)80131-5.

    Article  CAS  PubMed  Google Scholar 

  22. Mathur NB, Garg K, Kumar S. Respiratory distress in neonates with special reference to pneumonia. Indian Pediatr. 2002;39(6):529–37. PMID: 12084946

    CAS  PubMed  Google Scholar 

  23. Manson D. Diagnostic imaging of neonatal pneumonia. Radiol Imaging Neonatal Chest. 2010;18:99–111. https://doi.org/10.1007/978-3-540-33749-2_7.

    Article  Google Scholar 

  24. Pramanik AK, Rangaswamy N, Gates T. Neonatal respiratory distress: a practical approach to its diagnosis and management. Pediatr Clin N Am. 2015;62(2):453–69. https://doi.org/10.1016/j.pcl.2014.11.008.

    Article  Google Scholar 

  25. Demir OF, Hangul M, Kose M. Congenital lobar emphysema: diagnosis and treatment options. Int J Chron Obstruct Pulmon Dis. 2019;14:921–8. https://doi.org/10.2147/COPD.S170581.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Stocker JT. Cystic lung disease in infants and children. Fetal Pediatr Pathol. 2009;28(4):155–84. https://doi.org/10.1080/15513810902984095.

    Article  PubMed  Google Scholar 

  27. Pogoriler J, Swarr D, Kreiger P, Adzick NS, Peranteau W. Congenital cystic lung lesions: redefining the natural distribution of subtypes and assessing the risk of malignancy. Am J Surg Pathol. 2019;43(1):47–55. https://doi.org/10.1097/PAS.0000000000000992.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu H, Tian J, Li H, Lu L, Chen X, Xu W. Computed tomography features can distinguish type 4 congenital pulmonary airway malformation from other cystic congenital pulmonary airway malformations. Eur J Radiol. 2020;126:108964. https://doi.org/10.1016/j.ejrad.2020.108964.

    Article  PubMed  Google Scholar 

  29. Waelti SL, Garel L, Soglio DD, Rypens F, Messerli M, Dubois J. Neonatal congenital lung tumors - the importance of mid-second-trimester ultrasound as a diagnostic clue. Pediatr Radiol. 2017;47(13):1766–75. https://doi.org/10.1007/s00247-017-3953-3.

    Article  PubMed  Google Scholar 

  30. Kapralik J, Wayne C, Chan E, Nasr A. Surgical versus conservative management of congenital pulmonary airway malformation in children: a systematic review and meta-analysis. J Pediatr Surg. 2016;51(3):508–12. https://doi.org/10.1016/j.jpedsurg.2015.11.022.

    Article  PubMed  Google Scholar 

  31. Zhang N, Zeng Q, Chen C, Yu J, Zhang X. Distribution, diagnosis, and treatment of pulmonary sequestration: report of 208 cases. J Pediatr Surg. 2019;54(7):1286–92. https://doi.org/10.1016/j.jpedsurg.2018.08.054.

    Article  PubMed  Google Scholar 

  32. Panicek DM, Heitzman ER, Randall PA, Groskin SA, Chew FS, Lane EJ Jr, et al. The continuum of pulmonary developmental anomalies. Radiographics. 1987;7(4):747–72. https://doi.org/10.1148/radiographics.7.4.3448653.

    Article  CAS  PubMed  Google Scholar 

  33. Lichtenberger JP III, Biko DM, Carter BW, Pavio MA, Huppmann AR, Chung EM. Primary lung tumors in children: radiologic-pathologic correlation from the radiologic pathology archives. Radiographics. 2018;38(7):2151–72. https://doi.org/10.1148/rg.2018180192.

    Article  PubMed  Google Scholar 

  34. Brock KE, Wall J, Esquivel M, Newman B, Marina N, Albanese C, et al. Congenital peribronchial myofibroblastic tumor: case report of an asymptomatic infant with a rapidly enlarging pulmonary mass and review of the literature. Ann Clin Lab Sci. 2015;45(1):83–9.

    CAS  PubMed  Google Scholar 

  35. Markowitz RI. The anterior junction line: a radiographic sign of bilateral pneumothorax in neonates. Radiology. 1988;167(3):717–9. https://doi.org/10.1148/radiology.167.3.3363127.

    Article  CAS  PubMed  Google Scholar 

  36. van Lennep M, Singendonk MMJ, Dall’Oglio L, Gottrand F, Krishnan U, Terheggen-Lagro SWJ, et al. Oesophageal atresia. Nat Rev Dis Primers. 2019;5(1):26. https://doi.org/10.1038/s41572-019-0077-0.

    Article  PubMed  Google Scholar 

  37. Pardy C, D’Antonio F, Khalil A, Giuliani S. Prenatal detection of esophageal atresia: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2019;98(6):689–99. https://doi.org/10.1111/aogs.13536.

    Article  PubMed  Google Scholar 

  38. Lee S. Basic knowledge of tracheoesophageal fistula and esophageal atresia. Adv Neonatal Care. 2018;18(1):14–21. https://doi.org/10.1097/ANC.0000000000000464.

    Article  PubMed  Google Scholar 

  39. Golden J, Demeter NE, Lim JC, Ford HR, Upperman JS, Gayer CP. Routine post-operative esophagogram is not necessary after repair of esophageal atresia. Am J Surg. 2017;213(4):640–4. https://doi.org/10.1016/j.amjsurg.2016.12.020.

    Article  PubMed  Google Scholar 

  40. Zamiara P, Thomas KE, Connolly BL, Lane H, Marcon MA, Chiu PP. Long-term burden of care and radiation exposure in survivors of esophageal atresia. J Pediatr Surg. 2015;50(10):1686–90. https://doi.org/10.1016/j.jpedsurg.2015.05.006.

    Article  PubMed  Google Scholar 

  41. Leung AW, Lam HS, Chu WC, Lee KH, Tam YH, Ng PC. Congenital intrathoracic stomach: short esophagus or hiatal hernia? Neonatology. 2008;93(3):178–81. https://doi.org/10.1159/000108927.

    Article  PubMed  Google Scholar 

  42. Karmazyn B, Shold AJ, Delaney LR, Brown BP, Marine MB, Jennings SG, et al. Ultrasound evaluation of right diaphragmatic eventration and hernia. Pediatr Radiol. 2019;49(8):1010–7. https://doi.org/10.1007/s00247-019-04417-1.

    Article  PubMed  Google Scholar 

  43. Rescorla FJ, Yoder MC, West KW, Grosfeld JL. Delayed presentation of a right-sided diaphragmatic hernia and group B streptococcal sepsis. Two case reports and a review of the literature. Arch Surg. 1989;124(9):1083–6. https://doi.org/10.1001/archsurg.1989.01410090093021.

  44. Jain V, Yadav DK, Kandasamy D, Gupta DK. Hepatopulmonary fusion: a rare and potentially lethal association with right congenital diaphragmatic hernia. BMJ Case Rep. 2017;2017:bcr2016218227. https://doi.org/10.1136/bcr-2016-218227.

  45. Zamprakou A, Berg C, Strizek B, Müller A, Heydweiller A, Gembruch U, et al. Morgagni hernia presenting with massive pericardial effusion and ascites: prenatal management by thoraco-amniotic shunting and fetal endoscopic tracheal occlusion (FETO) and review of the literature. Arch Gynecol Obstet. 2016;294(5):953–8. https://doi.org/10.1007/s00404-016-4103-0.

    Article  CAS  PubMed  Google Scholar 

Further Reading

Download references

Acknowledgement

Acknowledgment to Dr. Atchara Mahayosnond, Dr. Teerasak Phewplung, and Dr. Nattinee Leelakanok from Department of Radiology, Faculty of Medicine, Chulalongkorn University for image contribution.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

10.1 Electronic Supplementary Material

Ped Chest X-ray (MP4 786111 kb)

Pediatric chest (MP4 43075 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trinavarat, P., Riccabona, M. (2023). Chest and Lung Imaging in Preterms and Neonates. In: Riccabona, M. (eds) Imaging in Neonates. Springer, Cham. https://doi.org/10.1007/978-3-031-15729-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15729-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15728-8

  • Online ISBN: 978-3-031-15729-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics