Skip to main content

Margin Optimization of Single Flux Quantum Logic Cells

  • Chapter
  • First Online:
Design Automation of Quantum Computers

Abstract

Single Flux Quantum (SFQ) logic family is an attractive alternative to CMOS technology with the promise of more than two orders of magnitude improvement in the energy-delay product. However, component-level parameter variations during the fabrication process of SFQ logic cells are quite high. Therefore, optimizing SFQ logic cells to maximize their operating parameter margin (and parametric yield) under variability sources is a necessity. In this chapter, a hybrid design optimization technique based on Automatic Niching Particle Swarm Optimization and Fireworks Algorithm is presented where the objective is to maximize the upper and lower bound margins of the design parameters of a SFQ logic cell. The proposed algorithm can efficiently optimize both simple and complex multi-stage logic cells with various fan-in and fan-out counts. The proposed method improves the critical margin range and parametric yield values for 6 different logic cells by 22.83% and 15.22% on average, when compared to a previously optimized open-source cell library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.K. Likharev, V. K. Semenov, RSFQ logic/memory family: a new josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1(1), 3–28 (1991)

    Article  Google Scholar 

  2. C.A. Hamilton, K.C. Gilbert, Margins and yield in single flux quantum logic. IEEE Trans, Appl. Supercond. 1(4), 157–163 (1991)

    Google Scholar 

  3. S. Whiteley, Josephson junctions in spice3. IEEE Trans. Magnet. 27(2), 2902–2905 (1991)

    Article  Google Scholar 

  4. S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev, A. Rylyakov, PSCAN’96: new software for simulation and optimization of complex RSFQ circuits. IEEE Trans. Appl. Supercond. 7(2), 2685–2689 (1997)

    Article  Google Scholar 

  5. T. Harnisch, J. Kunert, H. Toepfer, H. Uhlmann, Design centering methods for yield optimization of cryoelectronic circuits. IEEE Trans. Appl. Supercond. 7(2), 3434–3437 (1997)

    Article  Google Scholar 

  6. N. Mori, A. Akahori, T. Sato, N. Takeuchi, A. Fujimaki, H. Hayakawa, A new optimization procedure for single flux quantum circuits. Phys. C 357–360, 1557–1560 (2001). https://www.sciencedirect.com/science/article/pii/S0921453401005470

    Article  Google Scholar 

  7. Y. Tukel, A. Bozbey, C.A. Tunc, Development of an optimization tool for RSFQ digital cell library using particle swarm. IEEE Trans. Appl. Supercond. 23(3), 1 700 805–1 700 805 (2013)

    Google Scholar 

  8. Q. Kerr, M. Feldman, Multiparameter optimization of rsfq circuits using the method of inscribed hyperspheres. IEEE Trans. Appl. Supercond. 5(2), 3337–3340 (1995)

    Article  Google Scholar 

  9. C. Fourie, W. Perold, Comparison of genetic algorithms to other optimization techniques for raising circuit yield in superconducting digital circuits. IEEE Trans. Appl. Supercond. 13(2), 511–514 (2003)

    Article  Google Scholar 

  10. M.A. Karamuftuoglu, S. Demirhan, Y. Komura, M.E. Çelik, M. Tanaka, A. Bozbey, A. Fujimaki, Development of an optimizer for vortex transitional memory using particle swarm optimization. IEEE Trans. Appl. Supercond. 26(8), 1–6 (2016)

    Article  Google Scholar 

  11. P. Fourie, A. Groenwold, The particle swarm optimization algorithm in size and shape optimization. Struct. Multidisc. Optim. 23, 259–267 (2002)

    Article  Google Scholar 

  12. T. Hendtlass, The Particle Swarm Algorithm (Springer, Berlin, 2008), pp. 1029–1062. https://doi.org/10.1007/978-3-540-78293-3_23

    Google Scholar 

  13. Y. Tan, Y. Shi, H. Mo, Proceedings of the Advances in Swarm Intelligence: 4th International Conference, ICSI, Harbin, June 12–15, Part I, vol. 7928 (2013). http://link.springer.com/10.1007/978-3-642-38703-6

  14. R. Brits, A. Engelbrecht, F.V. den Bergh, A niching particle swarm optimizer, in Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution (2002)

    Google Scholar 

  15. Y. Tan, Fireworks Algorithm for Optimization in Advances in Swarm Intelligence, ed. by Y. Tan, Y. Shi, K.C. Tan (Springer, Berlin, 2010). https://doi.org/10.1007%2F978-3-642-13495-1

  16. A. Nickabadi, M.M. Ebadzadeh, R. Safabakhsh, A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11, 3658–3670 (2011)

    Article  Google Scholar 

  17. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (University of Michigan Press, Ann Arbor, 1975). https://books.google.com/books?id=JE5RAAAAMAAJ

    MATH  Google Scholar 

  18. V. Perlibakas, Distance measures for PCA-based face recognition. Pattern Recogn. Lett. 25(6), 711–724 (2004). http://www.sciencedirect.com/science/article/pii/S0167865504000248

    Article  Google Scholar 

  19. T. Huang, A.S. Mohan, A hybrid boundary condition for robust particle swarm optimization. IEEE Antennas Wirel. Propag. Lett. 4, 112–117 (2005)

    Article  Google Scholar 

  20. R. Kleiner, D. Koelle, F. Ludwig, J. Clarke, Superconducting quantum interference devices: state of the art and applications. Proc. IEEE 92(10), 1534–1548 (2004)

    Article  Google Scholar 

  21. S. Nazar Shahsavani, M. Pedram, A hyper-parameter based margin calculation algorithm for single flux quantum logic cells, in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2019), pp. 645–650

    Google Scholar 

  22. F.G. Ortmann, A. van der Merwe, H.R. Gerber, C.J. Fourie, A comparison of multi-criteria evaluation methods for RSFQ circuit optimization. IEEE Trans. Appl. Supercond. 21(3), 801–804 (2011)

    Article  Google Scholar 

  23. A. Charnes, W. Cooper, E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 429–444 (1978). https://www.sciencedirect.com/science/article/pii/0377221778901388

    Article  MathSciNet  MATH  Google Scholar 

  24. T.J. Stewart, A multi-criteria decision support system for R&D project selection. J. Oper. Res. Soc. 42(1), 17–26 (1991). http://www.jstor.org/stable/2582992

    Article  Google Scholar 

  25. S. Director, G. Hachtel, The simplicial approximation approach to design centering. IEEE Trans. Circuits Syst. 24(7), 363–372 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Soin, R. Spence, Statistical exploration approach to design centring. IEE Proc. G Electron. Circuits Syst. 127(6), 260–269 (1980), cited By 55

    Google Scholar 

  27. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed. (Addison-Wesley Longman Publishing Co. Inc., Boston, 1989)

    MATH  Google Scholar 

  28. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks (1995), pp. 1942–1948

    Google Scholar 

  29. L.C. Muller, RSFQ digital circuit design automation and optimisation. Accepted: 2015-05-20T09:27:37Z. https://scholar.sun.ac.za:443/handle/10019.1/96808

  30. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybernet. SMC-15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  31. S.U.N. Magnetics, sunmagnetics/RSFQlib (2020). Original-date: 2018-05-04T09:55:29Z. https://github.com/sunmagnetics/RSFQlib

  32. E.S. Fang, T. Van Duzer, A josephson integrated circuit simulator (JSIM) for superconductive electronics application (1989), pp. 407–410

    Google Scholar 

  33. D. Bratton, J. Kennedy, Defining a standard for particle swarm optimization, in 2007 IEEE Swarm Intelligence Symposium (2007), pp. 120–127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Altay Karamuftuoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karamuftuoglu, M.A., Nazar Shahsavani, S., Pedram, M. (2023). Margin Optimization of Single Flux Quantum Logic Cells. In: Topaloglu, R.O. (eds) Design Automation of Quantum Computers. Springer, Cham. https://doi.org/10.1007/978-3-031-15699-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15699-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15698-4

  • Online ISBN: 978-3-031-15699-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics