Skip to main content

The Spinal Cord in Diabetic Neuropathy

  • Chapter
  • First Online:
Diabetic Neuropathy

Part of the book series: Contemporary Diabetes ((CDI))

  • 796 Accesses

Abstract

The spinal cord is not only a conduit for the flow of afferent information from the periphery to the higher central nervous system, but also a complex sensorimotor processing interface. The spinal cord is the first site of integration of sensory input from the periphery and the last site of descending control of sensory and motor systems, therefore disruption of its function may impede appropriate CNS control systems and contribute to apparent peripheral neuropathy. In diabetes, the focus on the function and contribution of the spinal cord to neuropathy has increased, particularly in the domain of inflammation, molecular mechanisms, spinal disinhibition and stimulation. Numerous preclinical studies in rodents demonstrated the clear contributing role of the spinal cord to diabetic peripheral neuropathy and painful neuropathy. For the patients with diabetes this translates to few approved drugs, progress in spinal cord stimulation to benefit intractable pain and a new method of detection of pain generation site to benefit determination of appropriate treatment and future successful clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mizisin AP, Jolivalt CG, Calcutt NA (2007) Spinal cord: structure and function in diabetes. In: Veves A, Malik R (eds) Contemporary diabetes: diabetic neuropathy: clinical management, 2nd edn

    Google Scholar 

  2. Calcutt NA, Freshwater JD, O'Brien JS. Protection of sensory function and antihyperalgesic properties of a prosaposin-derived peptide in diabetic rats. Anesthesiology. 2000;93:1271–8.

    CAS  PubMed  Google Scholar 

  3. Eaton SE, Harris ND, Rajbhandari SM, et al. Spinal-cord involvement in diabetic peripheral neuropathy. Lancet. 2001;358:35–6.

    CAS  PubMed  Google Scholar 

  4. Selvarajah D, Wilkinson ID, Emery CJ, et al. Early involvement of the spinal cord in diabetic peripheral neuropathy. Diabetes Care. 2006;29:2664–9.

    PubMed  Google Scholar 

  5. Tesfaye S, Selvarajah D, Gandhi R, et al. Diabetic peripheral neuropathy may not be as its name suggests: evidence from magnetic resonance imaging. Pain. 2016;157(Suppl 1):S72–80.

    PubMed  Google Scholar 

  6. Quan Y, Du J, Wang X. High glucose stimulates GRO secretion from rat microglia via ROS, PKC, and NF-kappaB pathways. J Neurosci Res. 2007;85:3150–9.

    CAS  PubMed  Google Scholar 

  7. Quan Y, Jiang CT, Xue B, Zhu SG, Wang X. High glucose stimulates TNFalpha and MCP-1 expression in rat microglia via ROS and NF-kappaB pathways. Acta Pharmacol Sin. 2011;32:188–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Daulhac L, Mallet C, Courteix C, et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Mol Pharmacol. 2006;70:1246–54.

    CAS  PubMed  Google Scholar 

  9. Cheng KI, Wang HC, Chuang YT, et al. Persistent mechanical allodynia positively correlates with an increase in activated microglia and increased P-p38 mitogen-activated protein kinase activation in streptozotocin-induced diabetic rats. Eur J Pain. 2014;18:162–73.

    CAS  PubMed  Google Scholar 

  10. Toth CC, Jedrzejewski NM, Ellis CL, Frey WH 2nd. Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain. Mol Pain. 2010;6:16.

    PubMed  PubMed Central  Google Scholar 

  11. Suzuki N, Hasegawa-Moriyama M, Takahashi Y, Kamikubo Y, Sakurai T, Inada E. Lidocaine attenuates the development of diabetic-induced tactile allodynia by inhibiting microglial activation. Anesth Analg. 2011;113:941–6.

    CAS  PubMed  Google Scholar 

  12. Thakur V, Gonzalez M, Pennington K, Nargis S, Chattopadhyay M. Effect of exercise on neurogenic inflammation in spinal cord of type 1 diabetic rats. Brain Res. 2016;1642:87–94.

    CAS  PubMed  Google Scholar 

  13. Wodarski R, Clark AK, Grist J, Marchand F, Malcangio M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur J Pain. 2009;13:807–11.

    CAS  PubMed  Google Scholar 

  14. Morgado C, Pereira-Terra P, Cruz CD, Tavares I. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord. Diabetes Obes Metab. 2011;13:150–9.

    CAS  PubMed  Google Scholar 

  15. Tsuda M, Ueno H, Kataoka A, Tozaki-Saitoh H, Inoue K. Activation of dorsal horn microglia contributes to diabetes-induced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia. 2008;56:378–86.

    PubMed  Google Scholar 

  16. Daulhac L, Maffre V, Mallet C, et al. Phosphorylation of spinal N-methyl-d-aspartate receptor NR1 subunits by extracellular signal-regulated kinase in dorsal horn neurons and microglia contributes to diabetes-induced painful neuropathy. Eur J Pain. 2011;15:169.e161–12.

    Google Scholar 

  17. Johnson MS, Ryals JM, Wright DE. Diabetes-induced chemogenic hypoalgesia is paralleled by attenuated stimulus-induced fos expression in the spinal cord of diabetic mice. J Pain. 2007;8:637–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morgado C, Terra PP, Tavares I. Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: effects of gabapentin. Eur J Pain. 2010;14:693–9.

    CAS  PubMed  Google Scholar 

  19. Pabreja K, Dua K, Sharma S, Padi SS, Kulkarni SK. Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol. 2011;661:15–21.

    CAS  PubMed  Google Scholar 

  20. Ismail CAN, Suppian R, Aziz CBA, Long I. Minocycline attenuates the development of diabetic neuropathy by modulating DREAM and BDNF protein expression in rat spinal cord. J Diabetes Metab Disord. 2019;18:181–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ismail CAN, Suppian R, Ab Aziz CB, Long I. Expressions of spinal microglia activation, BDNF, and DREAM proteins correlated with formalin-induced nociceptive responses in painful and painless diabetic neuropathy rats. Neuropeptides. 2020;79:102003.

    PubMed  Google Scholar 

  22. Sun JJ, Tang L, Zhao XP, Xu JM, Xiao Y, Li H. Infiltration of blood-derived macrophages contributes to the development of diabetic neuropathy. J Immunol Res. 2019;2019:7597382.

    PubMed  PubMed Central  Google Scholar 

  23. Afsari ZH, Renno WM, Abd-El-Basset E. Alteration of glial fibrillary acidic proteins immunoreactivity in astrocytes of the spinal cord diabetic rats. Anat Rec (Hoboken). 2008;291:390–9.

    CAS  PubMed  Google Scholar 

  24. Renno WM, Alkhalaf M, Afsari Z, Abd-El-Basset E, Mousa A. Consumption of green tea alters glial fibriliary acidic protein immunoreactivity in the spinal cord astrocytes of STZ-diabetic rats. Nutr Neurosci. 2008;11:32–40.

    CAS  PubMed  Google Scholar 

  25. Kim SH, Kwon JK, Kwon YB. Pain modality and spinal glia expression by streptozotocin induced diabetic peripheral neuropathy in rats. Lab Anim Res. 2012;28:131–6.

    PubMed  PubMed Central  Google Scholar 

  26. Byrne FM, Cheetham S, Vickers S, Chapman V. Characterisation of pain responses in the high fat diet/streptozotocin model of diabetes and the analgesic effects of antidiabetic treatments. J Diabetes Res. 2015;2015:752481.

    PubMed  PubMed Central  Google Scholar 

  27. Li Y, Zhang Y, Liu DB, Liu HY, Hou WG, Dong YS. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-alpha in a rat model. Int J Med Sci. 2013;10:377–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu M, Liao K, Yu C, Li X, Liu S, Yang S. Puerarin alleviates neuropathic pain by inhibiting neuroinflammation in spinal cord. Mediators Inflamm. 2014;2014:485927.

    PubMed  PubMed Central  Google Scholar 

  29. Newton VL, Guck JD, Cotter MA, Cameron NE, Gardiner NJ. Neutrophils infiltrate the spinal cord parenchyma of rats with experimental diabetic neuropathy. J Diabetes Res. 2017;2017:4729284.

    PubMed  PubMed Central  Google Scholar 

  30. Yao L, Wu YT, Tian GX, Xia CQ, Zhang F, Zhang W. Acrolein scavenger hydralazine prevents streptozotocin-induced painful diabetic neuropathy and spinal neuroinflammation in rats. Anat Rec (Hoboken). 2017;300:1858–64.

    CAS  PubMed  Google Scholar 

  31. Liu M, Qiang QH, Ling Q, et al. Effects of Danggui Sini decoction on neuropathic pain: experimental studies and clinical pharmacological significance of inhibiting glial activation and proinflammatory cytokines in the spinal cord. Int J Clin Pharmacol Ther. 2017;55:453–64.

    CAS  PubMed  Google Scholar 

  32. Zhang TT, Xue R, Fan SY, et al. Ammoxetine attenuates diabetic neuropathic pain through inhibiting microglial activation and neuroinflammation in the spinal cord. J Neuroinflammation. 2018;15:176.

    PubMed  PubMed Central  Google Scholar 

  33. Zhong JM, Lu YC, Zhang J. Dexmedetomidine reduces diabetic neuropathy pain in rats through the Wnt 10a/beta-catenin signaling pathway. Biomed Res Int. 2018;2018:9043628.

    PubMed  PubMed Central  Google Scholar 

  34. Lee JY, Choi HY, Park CS, et al. GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats. J Ginseng Res. 2019;43:58–67.

    PubMed  Google Scholar 

  35. Reda HM, Zaitone SA, Moustafa YM. Effect of levetiracetam versus gabapentin on peripheral neuropathy and sciatic degeneration in streptozotocin-diabetic mice: influence on spinal microglia and astrocytes. Eur J Pharmacol. 2016;771:162–72.

    CAS  PubMed  Google Scholar 

  36. Evangelista AF, Vannier-Santos MA, de Assis Silva GS, et al. Bone marrow-derived mesenchymal stem/stromal cells reverse the sensorial diabetic neuropathy via modulation of spinal neuroinflammatory cascades. J Neuroinflammation. 2018;15:189.

    PubMed  PubMed Central  Google Scholar 

  37. Miranda HF, Poblete P, Sierralta F, Noriega V, Prieto JC, Zepeda RJ. Interleukin-1beta in synergism gabapentin with tramadol in murine model of diabetic neuropathy. Inflammopharmacology. 2019;27:151–5.

    CAS  PubMed  Google Scholar 

  38. Tawfik MK, Helmy SA, Badran DI, Zaitone SA. Neuroprotective effect of duloxetine in a mouse model of diabetic neuropathy: role of glia suppressing mechanisms. Life Sci. 2018;205:113–24.

    CAS  PubMed  Google Scholar 

  39. Elsherbiny NM, Ahmed E, Kader GA, et al. Inhibitory effect of valproate sodium on pain behavior in diabetic mice involves suppression of spinal histone deacetylase 1 and inflammatory mediators. Int Immunopharmacol. 2019;70:16–27.

    CAS  PubMed  Google Scholar 

  40. Ni GL, Cui R, Shao AM, Wu ZM. Salidroside ameliorates diabetic neuropathic pain in rats by inhibiting neuroinflammation. J Mol Neurosci. 2017;63:9–16.

    CAS  PubMed  Google Scholar 

  41. Liu S, Liu X, Xiong H, et al. CXCL13/CXCR5 signaling contributes to diabetes-induced tactile allodynia via activating pERK, pSTAT3, pAKT pathways and pro-inflammatory cytokines production in the spinal cord of male mice. Brain Behav Immun. 2019;80:711–24.

    CAS  PubMed  Google Scholar 

  42. Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev. 2005;57:27–77.

    CAS  PubMed  Google Scholar 

  43. Regoli D, Nsa Allogho S, Rizzi A, Gobeil FJ. Bradykinin receptors and their antagonists. Eur J Pharmacol. 1998;348:1–10.

    CAS  PubMed  Google Scholar 

  44. Talbot S, Chahmi E, Dias JP, Couture R. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy. J Neuroinflammation. 2010;7:36.

    PubMed  PubMed Central  Google Scholar 

  45. Ismail CAN, Aziz CBA, Suppian R, Long I. Imbalanced oxidative stress and pro-inflammatory markers differentiate the development of diabetic neuropathy variants in streptozotocin-induced diabetic rats. J Diabetes Metab Disord. 2018;17:129–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Comelli F, Bettoni I, Colombo A, Fumagalli P, Giagnoni G, Costa B. Rimonabant, a cannabinoid CB1 receptor antagonist, attenuates mechanical allodynia and counteracts oxidative stress and nerve growth factor deficit in diabetic mice. Eur J Pharmacol. 2010;637:62–9.

    CAS  PubMed  Google Scholar 

  47. Dogrul A, Gul H, Yesilyurt O, Ulas UH, Yildiz O. Systemic and spinal administration of etanercept, a tumor necrosis factor alpha inhibitor, blocks tactile allodynia in diabetic mice. Acta Diabetol. 2011;48:135–42.

    CAS  PubMed  Google Scholar 

  48. Drel VR, Lupachyk S, Shevalye H, et al. New therapeutic and biomarker discovery for peripheral diabetic neuropathy: PARP inhibitor, nitrotyrosine, and tumor necrosis factor-{alpha}. Endocrinology. 2010;151:2547–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liao YH, Zhang GH, Jia D, et al. Spinal astrocytic activation contributes to mechanical allodynia in a mouse model of type 2 diabetes. Brain Res. 2011;1368:324–35.

    CAS  PubMed  Google Scholar 

  50. Dauch JR, Yanik BM, Hsieh W, Oh SS, Cheng HT. Neuron-astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes. Glia. 2012;60:1301–15.

    PubMed  PubMed Central  Google Scholar 

  51. Xu X, Chen H, Ling BY, Xu L, Cao H, Zhang YQ. Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes. Neurosci Bull. 2014;30:53–66.

    PubMed  Google Scholar 

  52. Griggs RB, Donahue RR, Adkins BG, Anderson KL, Thibault O, Taylor BK. Pioglitazone inhibits the development of hyperalgesia and sensitization of spinal nociresponsive neurons in type 2 diabetes. J Pain. 2016;17:359–73.

    CAS  PubMed  Google Scholar 

  53. Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep. 2015;15:89.

    PubMed  Google Scholar 

  54. Hamid HS, Mervak CM, Munch AE, et al. Hyperglycemia- and neuropathy-induced changes in mitochondria within sensory nerves. Ann Clin Transl Neurol. 2014;1:799–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vincent AM, Edwards JL, McLean LL, et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 2010;120:477–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen L, Huang J, Li XC, et al. High-glucose induced mitochondrial dynamics disorder of spinal cord neurons in diabetic rats and its effect on mitochondrial spatial distribution. Spine (Phila Pa 1976). 2019;44:E715–22.

    PubMed  Google Scholar 

  57. Rashedinia M, Alimohammadi M, Shalfroushan N, et al. Neuroprotective effect of syringic acid by modulation of oxidative stress and mitochondrial mass in diabetic rats. Biomed Res Int. 2020;2020:8297984.

    PubMed  PubMed Central  Google Scholar 

  58. Rashedinia M, Khoshnoud MJ, Fahlyan BK, Hashemi SS, Alimohammadi M, Sabahi Z. Syringic acid: a potential natural compound for the management of renal oxidative stress and mitochondrial biogenesis in diabetic rats. Curr Drug Discov Technol. 2021;18(3):405–13.

    CAS  PubMed  Google Scholar 

  59. Malisza KL, Jones C, Gruwel ML, Foreman D, Fernyhough P, Calcutt NA. Functional magnetic resonance imaging of the spinal cord during sensory stimulation in diabetic rats. J Magn Reson Imaging. 2009;30:271–6.

    PubMed  PubMed Central  Google Scholar 

  60. Jiang Y, Mizisin AP, Rearden A, Jolivalt CG. Diabetes induces changes in ILK, PINCH and components of related pathways in the spinal cord of rats. Brain Res. 2010;1332:100–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tan AM, Samad OA, Fischer TZ, Zhao P, Persson AK, Waxman SG. Maladaptive dendritic spine remodeling contributes to diabetic neuropathic pain. J Neurosci. 2012;32:6795–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schuelert N, Gorodetskaya N, Just S, Doods H, Corradini L. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats. Neuroscience. 2015;291:146–54.

    CAS  PubMed  Google Scholar 

  63. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev. 2001;81:153–208.

    CAS  PubMed  Google Scholar 

  64. Nakayama AY, Harms MB, Luo L. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci. 2000;20:5329–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Threadgill R, Bobb K, Ghosh A. Regulation of dendritic growth and remodeling by Rho, Rac, and Cdc42. Neuron. 1997;19:625–34.

    CAS  PubMed  Google Scholar 

  66. Billuart P, Winter CG, Maresh A, Zhao X, Luo L. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell. 2001;107:195–207.

    CAS  PubMed  Google Scholar 

  67. Ohsawa M, Kamei J. RhoA/Rho kinase signaling in the spinal cord and diabetic painful neuropathy. Eur J Pharmacol. 2010;644:1–4.

    CAS  PubMed  Google Scholar 

  68. Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, Ueda H. Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nat Med. 2004;10:712–8.

    CAS  PubMed  Google Scholar 

  69. Tatsumi S, Mabuchi T, Katano T, et al. Involvement of Rho-kinase in inflammatory and neuropathic pain through phosphorylation of myristoylated alanine-rich C-kinase substrate (MARCKS). Neuroscience. 2005;131:491–8.

    CAS  PubMed  Google Scholar 

  70. Mustafa S, Vasudevan H, Yuen VG, McNeill JH. Renal expression of arachidonic acid metabolizing enzymes and RhoA/Rho kinases in fructose insulin resistant hypertensive rats. Mol Cell Biochem. 2010;333:203–9.

    CAS  PubMed  Google Scholar 

  71. Ohsawa M, Aasato M, Hayashi SS, Kamei J. RhoA/Rho kinase pathway contributes to the pathogenesis of thermal hyperalgesia in diabetic mice. Pain. 2011;152:114–22.

    CAS  PubMed  Google Scholar 

  72. He WY, Zhang B, Zhao WC, et al. mTOR activation due to APPL1 deficiency exacerbates hyperalgesia via Rab5/Akt and AMPK signaling pathway in streptozocin-induced diabetic rats. Mol Pain. 2019;15:1744806919880643.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang Z, Ding X, Zhou Z, et al. Sirtuin 1 alleviates diabetic neuropathic pain by regulating synaptic plasticity of spinal dorsal horn neurons. Pain. 2019;160:1082–92.

    CAS  PubMed  Google Scholar 

  74. Zhou CH, Zhang MX, Zhou SS, et al. SIRT1 attenuates neuropathic pain by epigenetic regulation of mGluR1/5 expressions in type 2 diabetic rats. Pain. 2017;158:130–9.

    CAS  PubMed  Google Scholar 

  75. Tomiyama M, Furusawa K, Kamijo M, Kimura T, Matsunaga M, Baba M. Upregulation of mRNAs coding for AMPA and NMDA receptor subunits and metabotropic glutamate receptors in the dorsal horn of the spinal cord in a rat model of diabetes mellitus. Brain Res Mol Brain Res. 2005;136:275–81.

    CAS  PubMed  Google Scholar 

  76. Rondon LJ, Privat AM, Daulhac L, et al. Magnesium attenuates chronic hypersensitivity and spinal cord NMDA receptor phosphorylation in a rat model of diabetic neuropathic pain. J Physiol. 2010;588:4205–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang J, Sun Z, Wang Y, Wang H, Guo Y. The role and mechanism of glutamic NMDA receptor in the mechanical hyperalgesia in diabetic rats. Neurol Res. 2017;39:1006–13.

    CAS  PubMed  Google Scholar 

  78. Ismail CAN, Suppian R, Abd Aziz CB, Haris K, Long I. Increased nociceptive responses in streptozotocin-induced diabetic rats and the related expression of spinal NR2B subunit of N-methyl-D-aspartate receptors. Diabetes Metab J. 2019;43:222–35.

    PubMed  Google Scholar 

  79. Fajrin FA, Nugroho AE, Nurrochmad A, Susilowati R. Ginger extract and its compound, 6-shogaol, attenuates painful diabetic neuropathy in mice via reducing TRPV1 and NMDAR2B expressions in the spinal cord. J Ethnopharmacol. 2020;249:112396.

    CAS  PubMed  Google Scholar 

  80. Suo M, Wang P, Zhang M. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice. J Neurophysiol. 2016;116:448–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen SR, Zhang J, Chen H, Pan HL. Streptozotocin-induced diabetic neuropathic pain is associated with potentiated calcium-permeable AMPA receptor activity in the spinal cord. J Pharmacol Exp Ther. 2019;371:242–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li JQ, Chen SR, Chen H, Cai YQ, Pan HL. Regulation of increased glutamatergic input to spinal dorsal horn neurons by mGluR5 in diabetic neuropathic pain. J Neurochem. 2010;112:162–72.

    CAS  PubMed  Google Scholar 

  83. Carroll I, Gaeta R, Mackey S. Multivariate analysis of chronic pain patients undergoing lidocaine infusions: increasing pain severity and advancing age predict likelihood of clinically meaningful analgesia. Clin J Pain. 2007;23:702–6.

    PubMed  PubMed Central  Google Scholar 

  84. Chen SR, Chen H, Yuan WX, Pan HL. Increased presynaptic and postsynaptic alpha2-adrenoceptor activity in the spinal dorsal horn in painful diabetic neuropathy. J Pharmacol Exp Ther. 2011;337:285–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen H, Xu X, Yang XY, et al. Systemic dexmedetomidine attenuates mechanical allodynia through extracellular sign db type 2 diabetic mice. Neurosci Lett. 2017;657:126–33.

    CAS  PubMed  Google Scholar 

  86. Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29:355–84.

    CAS  PubMed  Google Scholar 

  87. Cui YY, Xu H, Wu HH, Qi J, Shi J, Li YQ. Spatio-temporal expression and functional involvement of transient receptor potential vanilloid 1 in diabetic mechanical allodynia in rats. PLoS One. 2014;9:e102052.

    PubMed  PubMed Central  Google Scholar 

  88. Bektur E, Sahin E, Ceyhan E, et al. Beneficial effect of mirtazapine on diabetes-induced hyperalgesia: involvement of TRPV1 and ASIC1 channels in the spinal cord and dorsal root ganglion. Neurol Res. 2019;41:544–53.

    CAS  PubMed  Google Scholar 

  89. Zhang N, Wei H, Wu W, et al. Effect of ropivacaine on peripheral neuropathy in streptozocin diabetes-induced rats through TRPV1-CGRP pathway. Biosci Rep. 2019;39:BSR20190817.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wei H, Chapman H, Saarnilehto M, Kuokkanen K, Koivisto A, Pertovaara A. Roles of cutaneous versus spinal TRPA1 channels in mechanical hypersensitivity in the diabetic or mustard oil-treated non-diabetic rat. Neuropharmacology. 2010;58:578–84.

    CAS  PubMed  Google Scholar 

  91. Wei H, Koivisto A, Pertovaara A. Spinal TRPA1 ion channels contribute to cutaneous neurogenic inflammation in the rat. Neurosci Lett. 2010;479:253–6.

    CAS  PubMed  Google Scholar 

  92. Griggs RB, Santos DF, Laird DE, et al. Methylglyoxal and a spinal TRPA1-AC1-Epac cascade facilitate pain in the db/db mouse model of type 2 diabetes. Neurobiol Dis. 2019;127:76–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanaka K, Sekino S, Ikegami M, Ikeda H, Kamei J. Antihyperalgesic effects of ProTx-II, a Nav1.7 antagonist, and A803467, a Nav1.8 antagonist, in diabetic mice. J Exp Pharmacol. 2015;7:11–6.

    PubMed  PubMed Central  Google Scholar 

  94. Calcutt NA. Diabetic neuropathy and neuropathic pain: a (con)fusion of pathogenic mechanisms? Pain. 2020;161:S65–86.

    PubMed  PubMed Central  Google Scholar 

  95. Maeda Y, Aoki Y, Sekiguchi F, et al. Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T-type calcium channels. Pain. 2009;142:127–32.

    CAS  PubMed  Google Scholar 

  96. Matthews EA, Dickenson AH. Effects of ethosuximide, a T-type Ca(2+) channel blocker, on dorsal horn neuronal responses in rats. Eur J Pharmacol. 2001;415:141–9.

    CAS  PubMed  Google Scholar 

  97. Jacus MO, Uebele VN, Renger JJ, Todorovic SM. Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci. 2012;32:9374–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics. 2009;6:638–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: futuristic strategies based on these targets. Int J Endocrinol. 2014;2014:674987.

    PubMed  PubMed Central  Google Scholar 

  100. Andrabi SA, Kim NS, Yu SW, et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A. 2006;103:18308–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hewlings SJ, Kalman DS. Curcumin: a review of its effects on human health. Foods. 2017;6:92.

    PubMed  PubMed Central  Google Scholar 

  102. Acar A, Akil E, Alp H, et al. Oxidative damage is ameliorated by curcumin treatment in brain and sciatic nerve of diabetic rats. Int J Neurosci. 2012;122:367–72.

    CAS  PubMed  Google Scholar 

  103. Zhao WC, Zhang B, Liao MJ, et al. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci Lett. 2014;560:81–5.

    CAS  PubMed  Google Scholar 

  104. Raposo D, Morgado C, Pereira-Terra P, Tavares I. Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Res Bull. 2015;110:68–75.

    CAS  PubMed  Google Scholar 

  105. Ates O, Cayli SR, Altinoz E, et al. Neuroprotective effect of mexiletine in the central nervous system of diabetic rats. Mol Cell Biochem. 2006;286:125–31.

    CAS  PubMed  Google Scholar 

  106. Karademir M, Sonmez MA, Akcilar R, Kocak E, Yay A, Eser O. Evaluation of therapeutic potential of intraperitoneal ozone gas in combination with insulin above cranial and spinal neuropathy in rats with diabetes mellitus. Bratisl Lek Listy. 2018;119:636–41.

    CAS  PubMed  Google Scholar 

  107. Alam U, Sloan G, Tesfaye S. Treating pain in diabetic neuropathy: current and developmental drugs. Drugs. 2020;80:363–84.

    CAS  PubMed  Google Scholar 

  108. Lunn MP, Hughes RA, Wiffen PJ (2009) Duloxetine for treating painful neuropathy or chronic pain. Cochrane Database Syst Rev:CD007115.

    Google Scholar 

  109. Mixcoatl-Zecuatl T, Jolivalt CG. A spinal mechanism of action for duloxetine in a rat model of painful diabetic neuropathy. Br J Pharmacol. 2011;164:159–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kinoshita J, Takahashi Y, Watabe AM, Utsunomiya K, Kato F. Impaired noradrenaline homeostasis in rats with painful diabetic neuropathy as a target of duloxetine analgesia. Mol Pain. 2013;9:59.

    PubMed  PubMed Central  Google Scholar 

  111. Zhou DM, Zhuang Y, Chen WJ, Li W, Miao B. Effects of duloxetine on the toll-like receptor 4 signaling pathway in spinal dorsal horn in a rat model of diabetic neuropathic pain. Pain Med. 2018;19:580–8.

    PubMed  Google Scholar 

  112. Ikeda T, Ishida Y, Naono R, et al. Effects of intrathecal administration of newer antidepressants on mechanical allodynia in rat models of neuropathic pain. Neurosci Res. 2009;63:42–6.

    CAS  PubMed  Google Scholar 

  113. Pichon X, Wattiez AS, Becamel C, et al. Disrupting 5-HT(2A) receptor/PDZ protein interactions reduces hyperalgesia and enhances SSRI efficacy in neuropathic pain. Mol Ther. 2010;18:1462–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Vithlani M, Terunuma M, Moss SJ. The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev. 2011;91:1009–22.

    CAS  PubMed  Google Scholar 

  115. Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci. 2014;15:637–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bright DP, Renzi M, Bartram J, et al. Profound desensitization by ambient GABA limits activation of δ-containing GABAA receptors during spillover. J Neurosci. 2011;31:753–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Delgado-Lezama R, Loeza-Alcocer E, Andrés C, Aguilar J, Guertin PA, Felix R. Extrasynaptic GABA(A) receptors in the brainstem and spinal cord: structure and function. Curr Pharm Des. 2013;19:4485–97.

    CAS  PubMed  Google Scholar 

  118. Perez-Sanchez J, Lorenzo LE, Lecker I, et al. α5GABA. J Neurosci Res. 2017;95:1307–18.

    CAS  PubMed  Google Scholar 

  119. Loeza-Alcocer E, Canto-Bustos M, Aguilar J, González-Ramírez R, Felix R, Delgado-Lezama R. α(5)GABA(A) receptors mediate primary afferent fiber tonic excitability in the turtle spinal cord. J Neurophysiol. 2013;110:2175–84.

    CAS  PubMed  Google Scholar 

  120. Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev. 2004;84:835–67.

    CAS  PubMed  Google Scholar 

  121. Terunuma M. Diversity of structure and function of GABA. Proc Jpn Acad Ser B Phys Biol Sci. 2018;94:390–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Kaupmann K, Schuler V, Mosbacher J, et al. Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci U S A. 1998;95:14991–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bohlhalter S, Weinmann O, Mohler H, Fritschy JM. Laminar compartmentalization of GABAA-receptor subtypes in the spinal cord: an immunohistochemical study. J Neurosci. 1996;16:283–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Roberts LA, Beyer C, Komisaruk BR. Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci. 1986;39:1667–74.

    CAS  PubMed  Google Scholar 

  125. Yaksh TL. Behavioral and autonomic correlates of the tactile evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain. 1989;37:111–23.

    CAS  PubMed  Google Scholar 

  126. Sivilotti L, Woolf CJ. The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol. 1994;72:169–79.

    CAS  PubMed  Google Scholar 

  127. Sorkin LS, Puig S, Jones DL. Spinal bicuculline produces hypersensitivity of dorsal horn neurons: effects of excitatory amino acid antagonists. Pain. 1998;77:181–90.

    CAS  PubMed  Google Scholar 

  128. Wilson PR, Yaksh TL. Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol. 1978;51:323–30.

    CAS  PubMed  Google Scholar 

  129. Hammond DL, Drower EJ. Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol. 1984;103:121–5.

    CAS  PubMed  Google Scholar 

  130. Miletic G, Draganic P, Pankratz MT, Miletic V. Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1. Pain. 2003;105:347–53.

    CAS  PubMed  Google Scholar 

  131. Gwak YS, Tan HY, Nam TS, Paik KS, Hulsebosch CE, Leem JW. Activation of spinal GABA receptors attenuates chronic central neuropathic pain after spinal cord injury. J Neurotrauma. 2006;23:1111–24.

    PubMed  Google Scholar 

  132. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Castro-Lopes JM, Tavares I, Coimbra A. GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res. 1993;620:287–91.

    CAS  PubMed  Google Scholar 

  135. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 2002;22:6724–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Malmberg AB, O’Connor WT, Glennon JC, Cesena R, Calcutt NA. Impaired formalin-evoked changes of spinal amino acid levels in diabetic rats. Brain Res. 2006;1115:48–53.

    CAS  PubMed  Google Scholar 

  137. Jolivalt CG, Lee CA, Ramos KM, Calcutt NA. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain. 2008;140:48–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–21.

    CAS  PubMed  Google Scholar 

  139. Lee-Kubli CA, Calcutt NA. Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain. 2014;155:250–60.

    PubMed  Google Scholar 

  140. Fernyhough P, Diemel LT, Brewster WJ, Tomlinson DR. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem. 1995;64:1231–7.

    CAS  PubMed  Google Scholar 

  141. Lee-Kubli C, Marshall AG, Malik RA, Calcutt NA. The H-reflex as a biomarker for spinal disinhibition in painful diabetic neuropathy. Curr Diab Rep. 2018;18:1.

    PubMed  PubMed Central  Google Scholar 

  142. Wager EW, Buerger AA. A linear relationship between H-reflex latency and sensory conduction velocity in diabetic neuropathy. Neurology. 1974;24:711–4.

    PubMed  Google Scholar 

  143. Stanley EF. Sensory and motor nerve conduction velocities and the latency of the H reflex during growth of the rat. Exp Neurol. 1981;71:497–506.

    CAS  PubMed  Google Scholar 

  144. Cliffer KD, Tonra JR, Carson SR, et al. Consistent repeated M- and H-Wave recording in the hind limb of rats. Muscle Nerve. 1998;21:1405–13.

    CAS  PubMed  Google Scholar 

  145. Palmieri RM, Ingersoll CD, Hoffman MA. The hoffmann reflex: methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train. 2004;39:268–77.

    PubMed  PubMed Central  Google Scholar 

  146. Lloyd DP, Wilson VJ. Reflex depression in rhythmically active monosynaptic reflex pathways. J Gen Physiol. 1957;40:409–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ishikawa K, Ott K, Porter RW, Stuart D. Low frequency depression of the H wave in normal and spinal man. Exp Neurol. 1966;15:140–56.

    CAS  PubMed  Google Scholar 

  148. Meinck HM. Occurrence of the H reflex and the F wave in the rat. Electroencephalogr Clin Neurophysiol. 1976;41:530–3.

    CAS  PubMed  Google Scholar 

  149. Schindler-Ivens S, Shields RK. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res. 2000;133:233–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ho SM, Waite PM. Effects of different anesthetics on the paired-pulse depression of the h reflex in adult rat. Exp Neurol. 2002;177:494–502.

    CAS  PubMed  Google Scholar 

  151. Kakinohana O, Hefferan MP, Nakamura S, et al. Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience. 2006;141:1569–83.

    CAS  PubMed  Google Scholar 

  152. Lee-Kubli CA, Zhou X, Jolivalt CG, Calcutt NA. Pharmacological modulation of rate-dependent depression of the spinal H-reflex predicts therapeutic efficacy against painful diabetic neuropathy. Diagnostics (Basel). 2021;11:283.

    CAS  PubMed  Google Scholar 

  153. Hernandez-Reyes JE, Salinas-Abarca AB, Vidal-Cantu GC, et al. alpha5GABAA receptors play a pronociceptive role and avoid the rate-dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability. Pain. 2019;160:1448–58.

    CAS  PubMed  Google Scholar 

  154. Marshall AG, Lee-Kubli C, Azmi S, et al. Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes. 2017;66:1380–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Sultan A, Gaskell H, Derry S, Moore RA. Duloxetine for painful diabetic neuropathy and fibromyalgia pain: systematic review of randomised trials. BMC Neurol. 2008;8:29.

    PubMed  PubMed Central  Google Scholar 

  156. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150:971–9.

    CAS  PubMed  Google Scholar 

  157. Vannemreddy P, Slavin KV. Spinal cord stimulation: current applications for treatment of chronic pain. Anesth Essays Res. 2011;5:20–7.

    PubMed  PubMed Central  Google Scholar 

  158. McGreevy K, Williams KA. Contemporary insights into painful diabetic neuropathy and treatment with spinal cord stimulation. Curr Pain Headache Rep. 2012;16:43–9.

    PubMed  Google Scholar 

  159. McCarthy KF, McCrory C. Cerebrospinal fluid levels of glial cell-derived neurotrophic factor correlate with spinal cord stimulation frequency in patients with neuropathic pain: a preliminary report. Spinal Cord. 2014;52(Suppl 2):S8–10.

    PubMed  Google Scholar 

  160. Wu M, Linderoth B, Foreman RD. Putative mechanisms behind effects of spinal cord stimulation on vascular diseases: a review of experimental studies. Auton Neurosci. 2008;138:9–23.

    PubMed  PubMed Central  Google Scholar 

  161. Wu M, Komori N, Qin C, Farber JP, Linderoth B, Foreman RD. Sensory fibers containing vanilloid receptor-1 (VR-1) mediate spinal cord stimulation-induced vasodilation. Brain Res. 2006;1107:177–84.

    CAS  PubMed  Google Scholar 

  162. Wu M, Komori N, Qin C, Farber JP, Linderoth B, Foreman RD. Extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways involved in spinal cord stimulation (SCS)-induced vasodilation. Brain Res. 2008;1207:73–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Wu M, Thorkilsen MM, Qin C, Farber JP, Linderoth B, Foreman RD. Effects of spinal cord stimulation on peripheral blood circulation in rats with streptozotocin-induced diabetes. Neuromodulation. 2007;10:216–23.

    PubMed  Google Scholar 

  164. Davidson EP, Coppey LJ, Yorek MA. Activity and expression of the vanilloid receptor 1 (TRPV1) is altered by long-term diabetes in epineurial arterioles of the rat sciatic nerve. Diabetes Metab Res Rev. 2006;22:211–9.

    CAS  PubMed  Google Scholar 

  165. Yorek MA, Coppey LJ, Gellett JS, Davidson EP. Sensory nerve innervation of epineurial arterioles of the sciatic nerve containing calcitonin gene-related peptide: effect of streptozotocin-induced diabetes. Exp Diabesity Res. 2004;5:187–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Schechtmann G, Song Z, Ultenius C, Meyerson BA, Linderoth B. Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain. 2008;139:136–45.

    CAS  PubMed  Google Scholar 

  167. Stiller CO, Cui JG, O'Connor WT, Brodin E, Meyerson BA, Linderoth B. Release of gamma-aminobutyric acid in the dorsal horn and suppression of tactile allodynia by spinal cord stimulation in mononeuropathic rats. Neurosurgery. 1996;39:367–74; discussion 374-365.

    CAS  PubMed  Google Scholar 

  168. de Vos CC, Rajan V, Steenbergen W, van der Aa HE, Buschman HP. Effect and safety of spinal cord stimulation for treatment of chronic pain caused by diabetic neuropathy. J Diabetes Complications. 2009;23:40–5.

    PubMed  Google Scholar 

  169. Pluijms WA, Slangen R, Joosten EA, et al. Electrical spinal cord stimulation in painful diabetic polyneuropathy, a systematic review on treatment efficacy and safety. Eur J Pain. 2011;15:783–8.

    PubMed  Google Scholar 

  170. Slangen R, Schaper NC, Faber CG, et al. Spinal cord stimulation and pain relief in painful diabetic peripheral neuropathy: a prospective two-center randomized controlled trial. Diabetes Care. 2014;37:3016–24.

    PubMed  Google Scholar 

  171. van Beek M, Geurts JW, Slangen R, et al. Severity of neuropathy is associated with long-term spinal cord stimulation outcome in painful diabetic peripheral neuropathy: five-year follow-up of a prospective two-center clinical trial. Diabetes Care. 2018;41:32–8.

    PubMed  Google Scholar 

  172. Pluijms WA, van Kleef M, Honig WM, Janssen SP, Joosten EA. The effect of spinal cord stimulation frequency in experimental painful diabetic polyneuropathy. Eur J Pain. 2013;17:1338–46.

    CAS  PubMed  Google Scholar 

  173. van Beek M, van Kleef M, Linderoth B, van Kuijk SM, Honig WM, Joosten EA. Spinal cord stimulation in experimental chronic painful diabetic polyneuropathy: delayed effect of high-frequency stimulation. Eur J Pain. 2017;21:795–803.

    PubMed  Google Scholar 

  174. de Vos CC, Bom MJ, Vanneste S, Lenders MW, de Ridder D. Burst spinal cord stimulation evaluated in patients with failed back surgery syndrome and painful diabetic neuropathy. Neuromodulation. 2014;17:152–9.

    PubMed  Google Scholar 

  175. Tjepkema-Cloostermans MC, de Vos CC, Wolters R, Dijkstra-Scholten C, Lenders MW. Effect of burst stimulation evaluated in patients familiar with spinal cord stimulation. Neuromodulation. 2016;19:492–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne G. Jolivalt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marshall, A.G., Worthington, A., Jolivalt, C.G. (2023). The Spinal Cord in Diabetic Neuropathy. In: Tesfaye, S., Gibbons, C.H., Malik, R.A., Veves, A. (eds) Diabetic Neuropathy. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-15613-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15613-7_20

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15612-0

  • Online ISBN: 978-3-031-15613-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics