Skip to main content

Big Data Revolution and Machine Learning to Solve Genetic Mysteries in Crop Breeding

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of the OMICs Revolution
  • 661 Accesses

Abstract

Modern-day OMICs and technological advancement have enabled complex analysis of various phenotypic and genotypic characters more feasible resulting in a massive explosion of data relevant to various plant characters. This large collection of useful data has also propelled the scientific community toward expressive research that opens up multiple avenues of plant sciences in order to deal with modern challenges and threats faced by global food security. Issues such as climate change, increasing population, resource scarcity, and plant diseases exhibit an existential threat to the human race. Therefore, as a result, improving the yield potential of major food crops in a sustainable manner is necessary to meet these challenges. In parallel to this, the field of machine learning has evolved rapidly in recent times and has been massively integrated into different fields of science including plant sciences. This recent advancement in machine learning models has enabled a better understanding of genotypic basis and genome-wide analysis for various phenotypic traits in plants. Consequently, screening out useful traits can be utilized further to unlock the potential for breeding modern crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdipour, M., Ramazani, S. H. R., Younessi-Hmazekhanlu, M., & Niazian, M. (2018). Modeling oil content of sesame (Sesamum indicum L.) using artificial neural network and multiple linear regression approaches. Journal of the American Oil Chemists' Society, 95(3), 283–297.

    Article  CAS  Google Scholar 

  • Abdipour, M., Younessi-Hmazekhanlu, M., Ramazani, S. H. R., & Omidi, A. H. (2019). Artificial neural networks and multiple linear regression as potential methods for modeling seed yield of safflower (Carthamus tinctorius L.). Industrial Crops and Products, 127, 185–194.

    Article  Google Scholar 

  • Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R., & Kraft, N. J. B. (2010). The geography of climate change: Implications for conservation biogeography. Diversity and distributions, 16(3), 476–487.

    Article  Google Scholar 

  • Ahmar, S., Mahmood, T., Fiaz, S., Mora-Poblete, F., Shafiq, M. S., Chatta, M. S., & Jung, K. H. (2021). Advantage of nanotechnology-based genome editing system and its application in crop improvement. Front. Plant Sci, 12, 663849.

    Article  Google Scholar 

  • Akhter, Z., Bi, Z., Ali, K., Sun, C., Fiaz, S., Haider, F. U., & Bai, J. (2021). In response to abiotic stress, DNA methylation confers epigenetic changes in plants. Plants-Basel, 10(6), 1096.

    Article  CAS  Google Scholar 

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P., 2002. Studying gene expression and function. In Molecular biology of the cell (4th ed.). Garland Science

    Google Scholar 

  • AlQuraishi, M. (2019). End-to-end differentiable learning of protein structure. Cell Systems, 8(4), 292–301.

    Article  CAS  Google Scholar 

  • AltuntaÅŸ, Y., Cömert, Z., & Kocamaz, A. F. (2019). Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach. Computers and Electronics in Agriculture, 163, 104874.

    Article  Google Scholar 

  • Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S., & Cairns, J. E. (2018). Translating high-throughput phenotyping into genetic gain. Trends in Plant Science, 23(5), 451–466.

    Article  CAS  Google Scholar 

  • AtaÅŸ, M., Yardimci, Y., & Temizel, A. (2012). A new approach to aflatoxin detection in chili pepper by machine vision. Computers and Electronics in Agriculture, 87, 129–141.

    Article  Google Scholar 

  • Azeem, F., Zameer, R., Rehman Rashid, M. A., Rasul, I., Ul-Allah, S., Siddique, M. H., Fiaz, S., Raza, A., Younas, A., Rasool, A., Ali, M. A., Anwar, S., & Siddiqui, M. H. (2022). Genome-wide analysis of potassium transport genes in Gossypium raimondii suggest a role of GrHAK/KUP/KT8, GrAKT2.1 and GrAKT1.1 in response to abiotic stress. Plant Physiol Biochem, 170, 110–122.

    Article  CAS  Google Scholar 

  • Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will they impact health care? The Journal of Arthroplasty, 33(8), 2358–2361.

    Article  Google Scholar 

  • Bolger, A. M., Poorter, H., Dumschott, K., Bolger, M. E., Arend, D., Osorio, S., Gundlach, H., Mayer, K. F., Lange, M., Scholz, U., & Usadel, B. (2019). Computational aspects underlying genome to phenome analysis in plants. The Plant Journal, 97(1), 182–198.

    Article  CAS  Google Scholar 

  • Cai, G., Yang, Q., Chen, H., Yang, Q., Zhang, C., Fan, C., & Zhou, Y. (2016). Genetic dissection of plant architecture and yield-related traits in Brassica napus. Scientific Reports, 6(1), 1–16.

    CAS  Google Scholar 

  • Camargo, A., & Smith, J. S. (2009). An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosystems Engineering, 102(1), 9–21.

    Article  Google Scholar 

  • Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., & Klukas, C. (2014). Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. The Plant Cell, 26(12), 4636–4655.

    Article  CAS  Google Scholar 

  • Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667–697.

    Article  CAS  Google Scholar 

  • Cobb, J. N., Juma, R. U., Biswas, P. S., Arbelaez, J. D., Rutkoski, J., Atlin, G., Hagen, T., Quinn, M., & Ng, E. H. (2019). Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. Theoretical and Applied Genetics, 132(3), 627–645.

    Article  Google Scholar 

  • Collard, B. C., & Mackill, D. J. (2008). Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 557–572.

    Article  CAS  Google Scholar 

  • Collins, N. C., Tardieu, F., & Tuberosa, R. (2008). Quantitative trait loci and crop performance under abiotic stress: Where do we stand? Plant physiology, 147(2), 469–486.

    Article  CAS  Google Scholar 

  • Costa, M. O., Capel, L. S., Maldonado, C., Mora, F., Mangolin, C. A., & Machado, M. D. F. P. D. S. (2019). High genetic differentiation of grapevine rootstock varieties determined by molecular markers and artificial neural networks. Acta Scientiarum. Agronomy, 42.

    Google Scholar 

  • Coulibaly, S., Kamsu-Foguem, B., Kamissoko, D., & Traore, D. (2019). Deep neural networks with transfer learning in millet crop images. Computers in Industry, 108, 115–120.

    Article  Google Scholar 

  • Crick, F. (1970). Central dogma of molecular biology. Nature, 227(5258), 561–563.

    Article  CAS  Google Scholar 

  • Din, M. S., Wang, X., Alamery, S., Fiaz, S., et al. (2022). Identification of C-T novel polymorphism in 3rd exon of OsSPL14 gene governing seed sequence in rice. PLoS One, 17(3), e0264478.

    Article  CAS  Google Scholar 

  • Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., Wamba, S. F., & Roubaud, D. (2019). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting and Social Change, 144, 534–545. S0040162517305668. https://doi.org/10.1016/j.techfore.2017.06.020

  • Eraslan, G., Avsec, Ž., Gagneur, J., & Theis, F. J. (2019). Deep learning: New computational modelling techniques for genomics. Nature Reviews Genetics, 20(7), 389–403.

    Article  CAS  Google Scholar 

  • Eriksson, D. (2019). The evolving EU regulatory framework for precision breeding. Theoretical and Applied Genetics, 132(3), 569–573.

    Article  Google Scholar 

  • Evenson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. Science, 300(5620), 758–762.

    Article  CAS  Google Scholar 

  • Fiaz, S., & Wang, X. (2021). Evolution and application of novel plant breeding techniques for achieving food security. International Journal of Molecular Sciences, 22(11), 5585.

    Article  CAS  Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452

  • Fuentes, A., Yoon, S., Kim, S. C., & Park, D. S. (2017). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 17(9), 2022.

    Article  Google Scholar 

  • Furbank, R. T., Jimenez-Berni, J. A., George-Jaeggli, B., Potgieter, A. B., & Deery, D. M. (2019). Field crop phenomics: Enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytologist, 223(4), 1714–1727.

    Article  Google Scholar 

  • Gaballah, M. M., Fiaz, S., Wang, X., Younas, A., Khan, S. A., Wattoo, F. M., & Shafiq, M. R. (2021). Identification of genetic diversity among some promising lines of rice under drought stress using SSR markers. Journal of Taibah University for Science, 15(1), 468–478.

    Article  Google Scholar 

  • Garrett, K. A., Nita, M., De Wolf, E. D., Esker, P. D., Gomez-Montano, L., & Sparks, A. H. (2016). Plant pathogens as indicators of climate change. In Climate change (pp. 325–338). Elsevier

    Google Scholar 

  • Gold, K. M., Townsend, P. A., Herrmann, I., & Gevens, A. J. (2020). Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. Plant Science, 295, 110316.

    Article  CAS  Google Scholar 

  • Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., & Bloomfield, C. D. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 531–537.

    Article  CAS  Google Scholar 

  • Gore, M. A., Chia, J. M., Elshire, R. J., Sun, Q., Ersoz, E. S., Hurwitz, B. L., Peiffer, J. A., McMullen, M. D., Grills, G. S., Ross-Ibarra, J., & Ware, D. H. (2009). A first-generation haplotype map of maize. Science, 326(5956), 1115–1117.

    Article  CAS  Google Scholar 

  • Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., & Wiltshire, A. (2010). Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2973–2989.

    Article  Google Scholar 

  • Greven, M. M., Raw, V., & West, B. A. (2009). Effects of timing of water stress on yield and berry size. Water Science and Technology, 60(5), 1249–1255.

    Article  CAS  Google Scholar 

  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1), 389–422.

    Article  Google Scholar 

  • Haeberle, H. S., Helm, J. M., Navarro, S. M., Karnuta, J. M., Schaffer, J. L., Callaghan, J. J., Mont, M. A., Kamath, A. F., Krebs, V. E., & Ramkumar, P. N. (2019). Artificial intelligence and machine learning in lower extremity arthroplasty: A review. The Journal of Arthroplasty, 34(10), 2201–2203.

    Article  Google Scholar 

  • Haider, S. A., Naqvi, S. R., Akram, T., Umar, G. A., Shahzad, A., Sial, M. R., Khaliq, S., & Kamran, M. (2019). LSTM neural network based forecasting model for wheat production in Pakistan. Agronomy, 9(2), 72.

    Article  Google Scholar 

  • Hasan, M. J., Mahbub, S., Alom, M. S., Nasim, M. A. (2019). Rice disease identification and classification by integrating support vector machine with deep convolutional neural network. In 2019 1st international conference on advances in science, engineering and robotics technology (ICASERT) (pp. 1–6). IEEE

    Google Scholar 

  • Hesami, M., Condori-Apfata, J. A., Valderrama Valencia, M., & Mohammadi, M. (2020). Application of artificial neural network for modeling and studying in vitro genotype-independent shoot regeneration in wheat. Applied Sciences, 10(15), 5370.

    Article  CAS  Google Scholar 

  • Hesami, M., Naderi, R., Tohidfar, M., & Yoosefzadeh-Najafabadi, M. (2019). Application of adaptive neuro-fuzzy inference system-non-dominated sorting genetic Algorithm-II (ANFIS-NSGAII) for modeling and optimizing somatic embryogenesis of Chrysanthemum. Frontiers in Plant Science, 10, 869.

    Article  Google Scholar 

  • Hieter, P., & Boguski, M. (1997). Functional genomics: It's all how you read it. Science, 278(5338), 601–602.

    Article  CAS  Google Scholar 

  • Hu, H., Scheben, A., & Edwards, D. (2018). Advances in integrating genomics and bioinformatics in the plant breeding pipeline. Agriculture, 8(6), 75.

    Article  Google Scholar 

  • Huang, K. Y. (2007). Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture, 57(1), 3–11.

    Article  Google Scholar 

  • James, C. (2004). Global status of commercialized biotech/GM crops: 2004. ISAAA Briefs, 32, 1–12.

    Google Scholar 

  • Kakade, N. R., & Ahire, D. D. (2015). Real time grape leaf disease detection. Int J Adv Res Innov Ideas Educ (IJARIIE), 1(04), 1.

    Google Scholar 

  • Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep learning extracts and learns leaf features for plant classification. Pattern Recognition, 71, 1–13.

    Article  Google Scholar 

  • Li, W., Huai, X., Li, P., Raza, A., Mubarik, M. S., Habib, M., Faiz, S., Zhang, B., Pan, J., & Khan, R. S. A. (2021). Glutathione peroxidase (GPX) gene family in rapeseed (Brassica napus L.): Genomics analysis and expression profiling against different stresses. Antioxidant, 10(9), 1481.

    Article  Google Scholar 

  • Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), 321–332.

    Article  CAS  Google Scholar 

  • Lin, K., Gong, L., Huang, Y., Liu, C., & Pan, J. (2019). Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Frontiers in Plant Science, 10, 155.

    Article  Google Scholar 

  • Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D., Henry, K., & Hottle, R. (2014). Climate-smart agriculture for food security. Nature Climate Change, 4(12), 1068–1072.

    Article  Google Scholar 

  • Ma, W., Qiu, Z., Song, J., Li, J., Cheng, Q., Zhai, J., & Ma, C. (2018). A deep convolutional neural network approach for predicting phenotypes from genotypes. Planta, 248(5), 1307–1318.

    Article  CAS  Google Scholar 

  • Maxmen JS (1976) The post-physician era: Medicine in the twenty-first century

    Google Scholar 

  • Mokhtar, U., Ali, M. A., Hassanien, A. E., Hefny, H., 2015. Identifying two of tomatoes leaf viruses using support vector machine. In Information systems design and intelligent applications (pp. 771–782). Springer

    Google Scholar 

  • Montesinos-López, O. A., Martín-Vallejo, J., Crossa, J., Gianola, D., Hernández-Suárez, C. M., Montesinos-López, A., Juliana, P., & Singh, R. (2019). A benchmarking between deep learning, support vector machine and Bayesian threshold best linear unbiased prediction for predicting ordinal traits in plant breeding. G3: Genes, Genomes, Genetics, 9(2), 601–618.

    Article  Google Scholar 

  • Naylor, C. D. (2018). On the prospects for a (deep) learning health care system. JAMA, 320(11), 1099–1100.

    Article  Google Scholar 

  • Niazian, M., Sadat-Noori, S. A., & Abdipour, M. (2018b). Artificial neural network and multiple regression analysis models to predict essential oil content of ajowan (Carum copticum L.). Journal of Applied Research on Medicinal and Aromatic Plants, 9, 124–131.

    Article  Google Scholar 

  • Niazian, M., Sadat-Noori, S. A., & Abdipour, M. (2018). Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Industrial Crops and Products, 117, 224–234.

    Article  Google Scholar 

  • NiedbaÅ‚a, G. (2019). Application of artificial neural networks for multi-criteria yield prediction of winter rapeseed. Sustainability, 11(2), 533.

    Article  Google Scholar 

  • NiedbaÅ‚a, G., & Kozlowski, J. R. (2019). Application of artificial neural networks for multi-criteria yield prediction of winter wheat. Journal of Agricultural Science and Technology, 21(1), 51–61.

    Google Scholar 

  • NiedbaÅ‚a, G., Piekutowska, M., Weres, J., Korzeniewicz, R., Witaszek, K., Adamski, M., Pilarski, K., Czechowska-Kosacka, A., & Krysztofiak-Kaniewska, A. (2019). Application of artificial neural networks for yield modeling of winter rapeseed based on combined quantitative and qualitative data. Agronomy, 9(12), 781.

    Article  Google Scholar 

  • Orozco-Arias, S., Isaza, G., & Guyot, R. (2019). Retrotransposons in plant genomes: Structure, identification, and classification through bioinformatics and machine learning. International Journal of Molecular Sciences, 20(15), 3837.

    Article  CAS  Google Scholar 

  • Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato, H., Sato, H., Hori, M., Nakamura, Y., & Tanaka, T. (2002). Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nature Genetics, 32(4), 650–654.

    Article  CAS  Google Scholar 

  • Patel, D. A., Zander, M., Dalton-Morgan, J., & Batley, J. (2015). Advances in plant genotyping: Where the future will take us. In Plant genotyping (pp. 1–11). Humana Press.

    Google Scholar 

  • Poole, D., Macworth, A., & Goebel, R. (1998). Computational intelligence: A logical approach. New York: Oxford University Press.

    Google Scholar 

  • Ramcharan, A., Baranowski, K., McCloskey, P., Ahmed, B., Legg, J., & Hughes, D. P. (2017). Deep learning for image-based cassava disease detection. Frontiers in Plant Science, 8, 1852.

    Article  Google Scholar 

  • Ramstein, G. P., Jensen, S. E., & Buckler, E. S. (2019). Breaking the curse of dimensionality to identify causal variants in breeding 4. Theoretical and Applied Genetics, 132(3), 559–567.

    Article  Google Scholar 

  • Ravari, S. Z., Dehghani, H., & Naghavi, H. (2016). Assessment of salinity indices to identify Iranian wheat varieties using an artificial neural network. Annals of Applied Biology, 168(2), 185–194.

    Article  CAS  Google Scholar 

  • Raza, S. E. A., Smith, H. K., Clarkson, G. J., Taylor, G., Thompson, A. J., Clarkson, J., & Rajpoot, N. M. (2014). Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery. PLoS One, 9(6), e97612.

    Article  Google Scholar 

  • Raza, S. E. A., Prince, G., Clarkson, J. P., & Rajpoot, N. M. (2015). Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS One, 10(4), e0123262.

    Article  Google Scholar 

  • Rehman, S. U., Qanmber, G., Tahir, M. H. N., Irshad, A., Fiaz, S., Ahmad, F., Ali, Z., Sajjad, M., Shees, M., Usman, M., & Geng, Z. (2021). Characterization of vascular plant one-zinc finger in soybean (Glycine max and Glycine soja) and their expression analyses under drought condition. PLoS One, 16(7), e0253836.

    Article  CAS  Google Scholar 

  • Revathi, P., & Hemalatha, M. (2014). Identification of cotton diseases based on cross information gain deep forward neural network classifier with PSO feature selection. International Journal of Engineering and Technology, 5(6), 4637–4642.

    Google Scholar 

  • Rivero, R. M., Kojima, M., Gepstein, A., Sakakibara, H., Mittler, R., Gepstein, S., & Blumwald, E. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proceedings of the National Academy of Sciences, 104(49), 19631–19636.

    Article  CAS  Google Scholar 

  • Romer, C., Wahabzada, M., Ballvora, A., Pinto, F., Rossini, M., Panigada, C., Behmann, J., Léon, J., Thurau, C., Bauckhage, C., & Kersting, K. (2012). Early drought stress detection in cereals: Simplex volume maximisation for hyperspectral image analysis. Functional Plant Biology, 39(11), 878–890.

    Article  Google Scholar 

  • Rosenzweig, C., Iglesius, A., Yang, X.B., Epstein, P.R., & Chivian, E., 2001. Climate change and extreme weather events-implications for food production, plant diseases, and pests

    Google Scholar 

  • Rumpf, T., Mahlein, A. K., Steiner, U., Oerke, E. C., Dehne, H. W., & Plümer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and Electronics in Agriculture, 74(1), 91–99.

    Article  Google Scholar 

  • Sakoda, K., Watanabe, T., Sukemura, S., Kobayashi, S., Nagasaki, Y., Tanaka, Y., & Shiraiwa, T. (2019). Genetic diversity in stomatal density among soybeans elucidated using high-throughput technique based on an algorithm for object detection. Scientific reports, 9(1), 1–9.

    Article  CAS  Google Scholar 

  • Shabani, F., Kumar, L., & Esmaeili, A. (2014). Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agriculture, Ecosystems & Environment, 197, 96–105.

    Article  Google Scholar 

  • Shekoofa, A., Emam, Y., Shekoufa, N., Ebrahimi, M., & Ebrahimie, E. (2014). Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: A new avenue in intelligent agriculture. PLoS One, 9(5), e97288.

    Article  Google Scholar 

  • Zeng, S., Mao, Z., Ren, Y., Wang, D., Xu, D., & Joshi, T. (2021). G2PDeep: A web-based deep-learning framework for quantitative phenotype prediction and discovery of genomic markers. Nucleic Acids Research.

    Google Scholar 

  • Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine learning for high-throughput stress phenotyping in plants. Trends in Plant Science, 21(2), 110–124.

    Article  CAS  Google Scholar 

  • Sommer, C., & Gerlich, D. W. (2013). Machine learning in cell biology–teaching computers to recognize phenotypes. Journal of Cell Science, 126(24), 5529–5539.

    CAS  Google Scholar 

  • Sun, C., Ali, K., Yan, K., Fiaz, S., Dormatey, R., Bi, Z., & Bai, J. (2021). Exploration of epigenetics for improvement of drought and other stress resistance in crops: A review. Plants, 10(6), 1226.

    Article  CAS  Google Scholar 

  • TrÄ™bicki, P., Nancarrow, N., Cole, E., Bosque-Pérez, N. A., Constable, F. E., Freeman, A. J., Rodoni, B., Yen, A. L., Luck, J. E., & Fitzgerald, G. J. (2015). Virus disease in wheat predicted to increase with a changing climate. Global Change Biology, 21(9), 3511–3519.

    Article  Google Scholar 

  • Tsaftaris, S. A., Minervini, M., & Scharr, H. (2016). Machine learning for plant phenotyping needs image processing. Trends in Plant Science, 21(12), 989–991.

    Article  CAS  Google Scholar 

  • Turing, A. M. (1937). Computability and λ-definability. Journal of Symbolic Logic 2(4), 153–163. https://doi.org/10.2307/2268280

  • Uzal, L. C., Grinblat, G. L., Namías, R., Larese, M. G., Bianchi, J. S., Morandi, E. N., & Granitto, P. M. (2018). Seed-per-pod estimation for plant breeding using deep learning. Computers and Electronics in Agriculture, 150, 196–204.

    Article  Google Scholar 

  • Vakilian, K. A. (2020). Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Scientific Reports 10(1), 3041. https://doi.org/10.1038/s41598-020-59981-6

  • Valenzuela, C. E., Ballesta, P., Ahmar, S., Fiaz, S., Heidari, P., Maldonado, C., & Mora-Poblete, F. (2021). Haplotype- and SNP-based GWAS for growth and wood quality traits in Eucalyptus cladocalyx trees under arid conditions. Plants (Basel), 10(1), E148.

    Article  Google Scholar 

  • Varshney, R. K., Roorkiwal, M., Sun, S., Bajaj, P., Chitikineni, A., Thudi, M., Singh, N. P., Du, X., Upadhyaya, H. D., Khan, A. W., & Wang, Y. (2021). A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 599(7886), 622–627.

    Article  CAS  Google Scholar 

  • Veeramani, B., Raymond, J. W., & Chanda, P. (2018). DeepSort: Deep convolutional networks for sorting haploid maize seeds. BMC Bioinformatics, 19(9), 1–9.

    Google Scholar 

  • Wahabzada, M., Mahlein, A. K., Bauckhage, C., Steiner, U., Oerke, E. C., & Kersting, K. (2015). Metro maps of plant disease dynamics—automated mining of differences using hyperspectral images. PLoS One, 10(1), e0116902.

    Article  Google Scholar 

  • Wallace, J. G., Rodgers-Melnick, E., & Buckler, E. S. (2018). On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics. Annual Review of Genetics, 52, 421–444.

    Article  CAS  Google Scholar 

  • Wang, X., Xu, Y., Hu, Z., & Xu, C. (2018). Genomic selection methods for crop improvement: Current status and prospects. The Crop Journal, 6(4), 330–340.

    Article  Google Scholar 

  • Wang, H., Cimen, E., Singh, N., & Buckler, E. (2020). Deep learning for plant genomics and crop improvement. Current Opinion in Plant Biology, 54, 34–41.

    Article  CAS  Google Scholar 

  • Wei, M. C. F., Maldaner, L. F., Ottoni, P. M. N., & Molin, J. P. (2020). Carrot yield mapping: A precision agriculture approach based on machine learning. AI, 1(2), 229–241.

    Article  Google Scholar 

  • Wetterich, C. B., Kumar, R., Sankaran, S., Junior, J. B., Ehsani, R., & Marcassa, L. G. (2013). A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of citrus huanglongbing disease in USA and Brazil. In Laser Science. Optical Society of America, pp JW3A-26

    Google Scholar 

  • Xu, M., David, J. M., & Kim, S. H. (2018). The fourth industrial revolution: Opportunities and challenges. International Journal of Financial Research, 9(2), 90–95.

    Article  Google Scholar 

  • Younas, A., Xiukang, W., Yousaf, Z., Fiaz, S., Riaz, A., Hussain, S., & Huang, S. (2021). Physiological and biochemical changes induced by Qiangdi nano-863 biological assistant growth apparatus during rice seed priming under temperature stress. Braz. J Biol., 83, e245206.

    Article  CAS  Google Scholar 

  • Zhang, J., Song, Q., Cregan, P. B., & Jiang, G. L. (2016). Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycinemax). Theoretical and Applied Genetics, 129(1), 117–130.

    Article  CAS  Google Scholar 

  • Zhao, C., Zhang, Y., Du, J., Guo, X., Wen, W., Gu, S., Wang, J., & Fan, J. (2019). Crop phenomics: Current status and perspectives. Frontiers in Plant Science, 10, 714.

    Article  Google Scholar 

  • Zhao, J., Bodner, G., & Rewald, B. (2016). Phenotyping: Using machine learning for improved pairwise genotype classification based on root traits. Frontiers in Plant Science, 7, 1864.

    Article  Google Scholar 

  • Zheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Zhang, Y., & Yao, X. (2018). A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing, 10(12), 2026.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohaib Sarfraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, F., Sarfraz, S., Hameed, A., Ahmad, Z. (2023). Big Data Revolution and Machine Learning to Solve Genetic Mysteries in Crop Breeding. In: Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A. (eds) Sustainable Agriculture in the Era of the OMICs Revolution. Springer, Cham. https://doi.org/10.1007/978-3-031-15568-0_4

Download citation

Publish with us

Policies and ethics