Skip to main content

Atmospheric Rivers and Precipitation in the Middle East

  • Chapter
  • First Online:
Satellite Monitoring of Water Resources in the Middle East

Part of the book series: Springer Water ((SPWA))

  • 384 Accesses

  • The original version of this chapter was revised: The following belated corrections have been incorporated: The author name “Agniv Sengputa” has been changed to “Agniv Sengupta” in the Frontmatter, and in the Chapter. The correction to this chapter is available at https://doi.org/10.1007/978-3-031-15549-9_23

Abstract

This study explores historical mean climate and future projected change of atmospheric rivers (ARs) and precipitation in the Middle East and North Africa (MENA) region. A suite of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5, historical and RCP8.5 scenarios) and other observations are used to estimate AR frequency and mean daily precipitation. Despite the arid-to-semi-arid climate in MENA, parts of this region experience frequent and intense ARs, which largely contribute to the total annual precipitation, such as in the mountainous areas of Turkey and Iran. By the end of this century, this study reports that AR frequency is projected to increase by ~20–40% for the North Africa and Mediterranean regions (including any areas with latitudes 35 N and higher). However, in these regions, mean daily precipitation (i.e., regardless of the presence of ARs) is projected to decrease by ~15–30%. For other regions within MENA, such as the Arabian Peninsula and the Horn of Africa, minor changes in AR frequency are expected (±10%), yet mean precipitation for these regions is projected to increase (~50%). Generally, the sign of change in projected AR frequency is opposite to the sign of change in projected mean daily precipitation for most areas within the MENA region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 16 December 2022

    Correction to: Chapter “Atmospheric Rivers and Precipitation in the Middle East” in: A. Shaban (ed.), Satellite Monitoring of Water Resources in the Middle East, Springer Water, https://doi.org/10.1007/978-3-031-15549-9_4

References

  • Akbary M, Salimi S, Hosseini SA, Hosseini M (2019) Spatio‐temporal changes of atmospheric rivers in the Middle East and North Africa region. Int J Climatol 39(10):3976–3986

    Google Scholar 

  • Almazroui M (2016) RegCM4 in climate simulation over CORDEX-MENA/Arab domain: selection of suitable domain, convection and land-surface schemes. Int J Climatol 36(1):236–251

    Article  Google Scholar 

  • Almazroui. (2019a) Climate extremes over the arabian peninsula using RegCM4 for present conditions forced by several CMIP5 models. Atmosphere 10(11):675

    Article  ADS  Google Scholar 

  • Almazroui M (2019b) Temperature changes over the CORDEX-MENA domain in the 21st century using CMIP5 data downscaled with RegCM4: a focus on the Arabian Peninsula. Adv Meteorol

    Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA

    Google Scholar 

  • AMS Glossary of Meteorology (2017) Atmospheric river. http://www.glossary.ametsoc.org/wiki/Atmospheric_river. Accessed 12 Aug 2020

  • Bozkurt D, Ezber Y, Sen OL (2019) Role of the East Asian trough on the eastern Mediterranean temperature variability in early spring and the extreme case of 2004 warm spell. Clim Dyn 53(3–4):2309–2326

    Google Scholar 

  • Bucchignani E, Mercogliano P, Rianna G, Panitz HJ (2016) Analysis of ERA-Interim-driven COSMO-CLM simulations over Middle East–North Africa domain at different spatial resolutions. Int J Climatol 36(9):3346–3369

    Article  Google Scholar 

  • Bucchignani E, Mercogliano P, Panitz HJ, Montesarchio M (2018) Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Adv Clim Chang Res 9(1):66–80

    Article  Google Scholar 

  • Carvalho D (2019) An assessment of NASA’s GMAO MERRA-2 reanalysis surface winds. J Clim 32(23):8261–8281

    Article  ADS  Google Scholar 

  • Dettinger MD (2013) Atmospheric rivers as drought busters on the US West Coast. J Hydrometeorol 14(6):1721–1732

    Article  ADS  Google Scholar 

  • Dettinger MD, Cayan DR, Meyer MK, Jeton AE (2004) Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River basins, Sierra Nevada, California, 1900–2099. Clim Change 62(1–3):283–317

    Article  Google Scholar 

  • Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) Atmospheric rivers, floods and the water resources of California. Water 3(2):445–478

    Google Scholar 

  • Dezfuli A (2020) Rare atmospheric river caused record floods across the Middle East. Bull Am Meteor Soc 101(4):E394–E400. https://doi.org/10.1175/BAMS-D-19-0247.1

    Article  ADS  Google Scholar 

  • Esfandiari N, Lashkari H (2020a) Identifying atmospheric river events and their paths into Iran. Theoret Appl Climatol 1–13

    Google Scholar 

  • Esfandiari N, Lashkari H (2020b) The effect of atmospheric rivers on cold-season heavy precipitation events in Iran. J Water Clim Change

    Google Scholar 

  • Espinoza V, Waliser DE, Guan B, Lavers DA, Martin Ralph F (2018) Global analysis of climate change projection effects on atmospheric rivers. Geophys Res Lett 45(9):4299–4308

    Google Scholar 

  • Gao Y, Lu J, Ruby Leung L, Yang Q, Hagos S, Qian Y (2015) Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys Res Lett 42(17):7179–7186

    Google Scholar 

  • Gao Y, Lu J, Ruby Leung L (2016) Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. J Clim 29(18):6711–6726

    Google Scholar 

  • Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30(14):5419–5454

    Google Scholar 

  • Gershunov A, Shulgina T, Clemesha RES, Guirguis K, Pierce DW, Dettinger MD, Lavers DA et al (2019) Precipitation regime change in Western North America: the role of atmospheric rivers. Sci Rep 9(1):1–11

    Google Scholar 

  • Gibson PB, Waliser DE, Lee H, Tian B, Massoud E (2019) Climate model evaluation in the presence of observational uncertainty: precipitation indices over the contiguous United States. J Hydrometeorol 20(7):1339–1357

    Article  ADS  Google Scholar 

  • Gimeno L, Dominguez F, Nieto R, Trigo R, Drumond A, Reason CJC, Taschetto AS, Ramos AM, Kumar R, Marengo J (2016) Major mechanisms of atmospheric moisture transport and their role in extreme precipitation

    Google Scholar 

  • Gorodetskaya IV, Tsukernik M, Claes K, Ralph MF, Neff WD, Van Lipzig NPM (2014) The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys Res Lett 41(17):6199–6206

    Google Scholar 

  • Guan B, Waliser DE (2015) Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J Geophys Res Atmos 120(24):12514–12535

    Article  ADS  Google Scholar 

  • Guan B, Waliser DE (2019) Tracking atmospheric rivers globally: spatial distributions and temporal evolution of life cycle characteristics. J Geophys Res Atmos 124:12523–12552

    Article  ADS  Google Scholar 

  • Guan B, Waliser DE, Ralph FM (2018) An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. J Hydrometeor 19:321–337

    Article  Google Scholar 

  • Guan B, Molotch NP, Waliser DE, Fetzer EJ, Neiman PJ (2010) Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys Res Lett 37(20)

    Google Scholar 

  • Hagos SM, Ruby Leung L, Yoon J-H, Lu J, Gao Y (2016) A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophys Res Lett 43(3):1357–1363

    Google Scholar 

  • Hasanean HM (2004) Middle east meteorology. http://www.eolss.net/. Accessed 7 Aug 2015

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  ADS  Google Scholar 

  • Heydarizad M, Raeisi E, Sorí R, Gimeno L (2019) Developing meteoric water lines for Iran based on air masses and moisture sources. Water 11:2359

    Article  CAS  Google Scholar 

  • Hibbard KA, Meehl GA, Cox PM, Friedlingstein P (2007) A strategy for climate change stabilization experiments. EOS Trans Am Geophys Union 88(20):217–221

    Article  ADS  Google Scholar 

  • Huang X, Swain DL, Hall AD (2020) Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Sci Adv 6:eaba1323

    Google Scholar 

  • Huning LS, Margulis SA, Guan B, Waliser DE, Neiman PJ (2017) Implications of detection methods on characterizing atmospheric river contribution to seasonal snowfall across Sierra Nevada, USA. Geophys Res Lett 44:10445–10453

    Article  ADS  Google Scholar 

  • Huning LS, Guan B, Waliser DE, Lettenmaier DP (2019) Sensitivity of seasonal snowfall attribution to atmospheric rivers and their reanalysis-based detection. Geophys Res Lett 46:794–803

    Article  ADS  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472

    Google Scholar 

  • Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster JM et al (2015) The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteor Soc 96(8):1333–1349

    Article  ADS  Google Scholar 

  • Lavers DA, Allan RP, Villarini G, Lloyd-Hughes B, Brayshaw DJ, Wade AJ (2013) Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ Res Lett 8(3):034010

    Article  ADS  Google Scholar 

  • Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw DJ, Wade AJ (2011) Winter floods in Britain are connected to atmospheric rivers. Geophys Res Lett 38(23)

    Google Scholar 

  • Lavers DA, Martin Ralph F, Waliser DE, Gershunov A, Dettinger MD (2015) Climate change intensification of horizontal water vapor transport in CMIP5. Geophys Res Lett 42(13):5617–5625

    Google Scholar 

  • Lee H, Goodman A, McGibbney L, Waliser DE, Kim J, Loikith PC, Gibson PB, Massoud EC (2018) Regional climate model evaluation system powered by Apache open climate workbench v1.3.0: an enabling tool for facilitating regional climate studies. Geosci Model Dev 11:4435–4449

    Google Scholar 

  • Leung Ruby L, Qian Y (2009) Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model. Geophys Res Lett 36(3)

    Google Scholar 

  • Massoud EC, Huisman J, Benincà E, Dietze MC, Bouten W, Vrugt JA (2018a) Probing the limits of predictability: data assimilation of chaotic dynamics in complex food webs. Ecol Lett 21(1):93–103

    Article  Google Scholar 

  • Massoud EC, Purdy AJ, Miro ME, Famiglietti JS (2018b) Projecting groundwater storage changes in California’s Central Valley. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Massoud EC, Espinoza V, Guan B, Waliser D (2019) Global climate model ensemble approaches for future projections of atmospheric rivers. Earth’s Fut https://doi.org/10.1029/2019EF001249

  • Massoud E, Massoud T, Guan B, Sengupta A, Espinoza V, De Luna M, Raymond C, Waliser D (2020a) Atmospheric rivers and precipitation in the Middle East and North Africa (Mena). Water 12(10):2863

    Google Scholar 

  • Massoud EC, Lee H, Gibson P, Loikith P, Waliser D (2020b) Bayesian model averaging of climate model projections constrained by precipitation observations over the contiguous United States. J Hydrometeorol

    Google Scholar 

  • Massoud EC, Liu Z, Shaban A, El Hage M (2021) Groundwater depletion signals in the Beqaa plain. Lebanon: evidence from GRACE and Sentinel-1 Data. Rem Sens 13(5):915

    Google Scholar 

  • Meehl GA, Hibbard K (2007) Summary report: a strategy for climate change stabilization experiments with AOGCMs and ESMs: Aspen global change institute 2006 session, Earth System models: the next generation (Aspen, Colorado, July 30-August 5, 2006). World Climate Research Programme

    Google Scholar 

  • Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K et al (2009) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90(10):1467–1486

    Google Scholar 

  • Nash D, Waliser D, Guan B, Ye H, Ralph M (2018) The role of atmospheric rivers in extratropical and polar hydroclimate. J Geophys Res Atmos 123:6804–6821

    Article  ADS  Google Scholar 

  • Neelin David J, Langenbrunner B, Meyerson JE, Hall A, Berg N (2013) California winter precipitation change under global warming in the coupled model intercomparison project phase 5 ensemble. J Clim 26(17):6238–6256

    Google Scholar 

  • Neiman PJ, Martin Ralph F, Wick GA, Lundquist JD, Dettinger MD (2008) Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J Hydrometeorol 9(1):22–47

    Google Scholar 

  • Neiman PJ, Schick LJ, Ralph FM, Hughes M, Wick GA (2011) Flooding in western Washington: the connection to atmospheric rivers. J Hydrometeorol 12(6):1337–1358

    Google Scholar 

  • Ozturk T, Turp MT, Türkeş M, Kurnaz ML (2018) Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4.4. Atmos Res 206:87–107

    Article  Google Scholar 

  • Paltan H, Waliser D, Lim WH, Guan B, Yamazaki D, Pant R, Dadson S (2017) Global floods and water availability driven by atmospheric rivers. Geophys Res Lett 44:10,387–10,395

    Google Scholar 

  • Payne AE, Magnusdottir G (2015) An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J Geophys Res Atmos 120(21):11–173

    Article  Google Scholar 

  • Payne AE, Demory M, Leung LR et al (2020) Responses and impacts of atmospheric rivers to climate change. Nat Rev Earth Environ 1:143–157

    Article  ADS  Google Scholar 

  • Pierce DW, Cayan DR, Das T, Maurer EP, Miller NL, Bao Y, Kanamitsu M et al (2013) The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes in California. J Clim 26(16):5879–5896

    Google Scholar 

  • Radić V, Cannon AJ, Menounos B, Gi N (2015) Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. J Geophys Res Atmos 120(18):9279–9302

    Article  ADS  Google Scholar 

  • Ralph FM, Dettinger MD (2011) Storms, floods, and the science of atmospheric rivers. EOS Trans Am Geophys Union 92(32):265–266

    Article  ADS  Google Scholar 

  • Ralph FM, Coleman T, Neiman PJ, Zamora RJ, Dettinger MD (2013) Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal northern California. J Hydrometeorol 14(2):443–459

    Article  ADS  Google Scholar 

  • Ralph FM, Neiman PJ, Wick GA, Gutman SI, Dettinger MD, Cayan DR, White AB (2006) Flooding on California's Russian river: role of atmospheric rivers. Geophys Res Lett 33(13)

    Google Scholar 

  • Ramos AM, Tomé R, Trigo RM, Liberato MLR, Pinto JG (2016) Projected changes in atmospheric rivers affecting Europe in CMIP5 models. Geophys Res Lett 43(17):9315–9323

    Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M (2018) GPCC full data monthly product version 2018 at 0.25: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. GPCC: Offenbach, Germany

    Google Scholar 

  • Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci 7(10):703

    Google Scholar 

  • Shields CA, Kiehl JT (2016a) Atmospheric river landfall-latitude changes in future climate simulations. Geophys Res Lett 43(16):8775–8782

    Article  ADS  Google Scholar 

  • Shields CA, Kiehl JT (2016b) Simulating the pineapple express in the half degree community climate system model, CCSM4. Geophys Res Lett 43(14):7767–7773

    Article  ADS  Google Scholar 

  • Slingo J, Palmer T (2011) Uncertainty in weather and climate prediction. Philos Trans R Soc A Math Phys Eng Sci 369(1956):4751–4767

    Article  ADS  MATH  Google Scholar 

  • Sodemann H, Stohl A (2013) Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon Weather Rev 141(8):2850–2868

    Article  ADS  Google Scholar 

  • Spinoni J, Barbosa P, Bucchignani E, Cassano J, Cavazos T, Christensen JH, Christensen OB, Coppola E, Evans J, Geyer B, Giorgi F, Hadjinicolaou P, Jacob D, Katzfey J, Koenigk T, Laprise R, Lennard CJ, Kurnaz ML, Nikulin G, Ozturk T, Panitz H-J, Zittis G, Dosio A (2020) Future global meteorological drought hot spots: a study based on CORDEX data. J Clim 33(9):3635–3661

    Article  ADS  Google Scholar 

  • Swain DL, Langenbrunner B, Neelin JD, Hall A (2018) Increasing precipitation volatility in twenty-first-century California. Nat Clim Change 8(5):427–433

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498

    Article  ADS  Google Scholar 

  • Terink W, Immerzeel WW, Droogers P (2013) Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050. Int J Clim 33:3055–3072

    Article  Google Scholar 

  • Tyrlis E, Lelieveld J, Steil B (2013) The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Clim Dyn 40(5–6):1103–1123

    Article  Google Scholar 

  • United Nations Office for the Coordination of Humanitarian Affairs (2019) Disasters. Iran: floods—Mar 2019. Ann Rev Environ Resour 41:117–141. https://www.reliefweb.int/disaster/fl-2019-000022-irn

  • Viale M, Nuñez MN (2011) Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J Hydrometeorol 12(4):481–507

    Article  ADS  Google Scholar 

  • Vrugt JA, Massoud EC (2018) Uncertainty quantification of complex system models: Bayesian analysis. In: Duan Q, Pappenberger F, Thielen J, Wood A, Cloke HL, Schaake JC (eds) Handbook of hydrometeorological ensemble forecasting

    Google Scholar 

  • Waliser D, Guan B (2017) Extreme winds and precipitation during landfall of atmospheric rivers. Nat Geosci 10(3):179

    Article  ADS  CAS  Google Scholar 

  • Wang C-C, Lin B-X, Chen C-T, Lo S-H (2015) Quantifying the effects of long-term climate change on tropical cyclone rainfall using a cloud-resolving model: examples of two landfall typhoons in Taiwan. J Clim 28(1):66–85

    Article  ADS  Google Scholar 

  • Warner MD, Mass CF, Salathé EP Jr (2015) Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J Hydrometeorol 16(1):118–128

    Google Scholar 

  • Zappa G, Hawcroft MK, Shaffrey L, Black E, Brayshaw DJ (2015) Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim Dyn 45:1727–1738

    Article  Google Scholar 

  • Ziv B, Dayan U, Sharon D (2005) A mid-winter, tropical extreme flood-producing storm in southern Israel: synoptic scale analysis. Meteorol Atmos Phys 88(1–2):53–63

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Massoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Massoud, E., Massoud, T., Waliser, D., Guan, B., Sengupta, A. (2022). Atmospheric Rivers and Precipitation in the Middle East. In: Shaban, A. (eds) Satellite Monitoring of Water Resources in the Middle East. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-15549-9_4

Download citation

Publish with us

Policies and ethics