Skip to main content

Ecological Footprints in Changing Climate: An Overview

  • Chapter
  • First Online:
Ecological Footprints of Climate Change

Abstract

Human exploitation on the natural resources is continuing in an overwhelming rate. Nonrenewable natural resources are expected to deplete in the near future; in addition, humans are consuming the nonrenewable resources at a rate which is far above the time required for regeneration. The exponential growing population and global economic competency drive the overexploitation of natural resources. Apart from this, the climate change also possesses boundless threat for the natural resources as well as human habitats. Overexploitation of the natural fuels and other resources also amplifies the climate change and can act as a positive cyclic feedback mechanism. These activities drastically decrease the biocapacity and efficiency of the Earth which leads to higher ecological footprint for the products industrialized from the natural resources. The carbon emission is the one of the major contributors of ecological footprint which contributes to global warming- and climate change-related disasters as well as natural resource degradations. This demands the sustainability for land or soil, forest, and aquatic ecosystems as well as for human habitats. Sustainability is the quintessential solution which can supply the remedies for the abovementioned issues. The integrated approach of climate resilience acquiring from the adaptation and mitigation strategies, nature-based solutions, and UN sustainable development goals can deliver minimum ecological footprint generations in milieu of changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76(1):1–13

    Article  ADS  Google Scholar 

  • Ammer C (2019) Diversity and forest productivity in a changing climate. New Phytol 221(1):50–66

    Article  Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016) Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus campus. Cogent Eng 3. https://doi.org/10.1080/23311916.2015.1134304

  • Atkinson A, Siegel V, Pakhomov E, Rothery P (2004) Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432(7013):100–103

    Article  ADS  CAS  Google Scholar 

  • Barbraud C, Weimerskirch H, Bost CA, Forcada J, Trathan P, Ainley D (2008) Are king penguin populations threatened by Southern Ocean warming? Proc Natl Acad Sci 105(26):E38–E38

    Article  CAS  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64(2):269–285

    Article  Google Scholar 

  • Borucke M, Moore D, Cranston G, Gracey K, Iha K, Larson J, Lazarus E, Morales JC, Wackernagel M, Galli A (2013) Accounting for demand and supply of the biosphere’s regenerative capacity: the National Footprint Accounts’ underlying methodology and framework. Ecol Indic 24:518–533

    Article  Google Scholar 

  • Brevik EC, Cerdà A, Mataix-Solera J, Pereg L, Quinton JN, Six J, Van Oost K (2015) The interdisciplinary nature of SOIL. Soil 1:117–129

    Article  ADS  Google Scholar 

  • Ceballos G, Ehrlich PR (2018) The misunderstood sixth mass extinction. Science 360(6393):1080–1081

    Article  ADS  Google Scholar 

  • Chapin FS, Torn MS, Tateno M (1996) Principles of ecosystem sustainability. Am Nat 148(6):1016–1037

    Article  Google Scholar 

  • Chapin FS, Carpenter SR, Kofinas GP, Folke C, Abel N, Clark WC et al (2010) Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol Evol 25(4):241–249

    Article  Google Scholar 

  • Chen S, Wang W, Xu W et al (2018) Plant diversity enhances productivity and soil carbon storage. Proc Natl Acad Sci U S A 115:4027–4032

    Article  ADS  CAS  Google Scholar 

  • Chitsaz N, Azarnivand A (2017) Water scarcity management in arid regions based on an extended multiple criteria technique. Water Resour Manag 31(1):233–250

    Article  Google Scholar 

  • Clark WC (2007) Sustainability science: a room of its own. Proc Natl Acad Sci 104(6):1737–1738

    Article  ADS  CAS  Google Scholar 

  • Conacher A (2009) Land degradation: a global perspective. N Z Geogr 65(2):91–94

    Article  Google Scholar 

  • Díaz ME, Figueroa R, Alonso MLS, Vidal-Abarca MR (2018) Exploring the complex relations between water resources and social indicators: the Biobío Basin (Chile). Ecosyst Serv 31:84–92

    Article  Google Scholar 

  • Díaz S, Settele J, Brondízio ES, Ngo HT, Guèze M, Agard J et al (2019) Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn

    Google Scholar 

  • Dominati E, Patterson M, Mackay A (2010) A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol Econ 69(9):1858–1868

    Article  Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S et al (2011) Renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139151153

    Book  Google Scholar 

  • Erb KH, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T et al (2018) Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553(7686):73–76

    Article  ADS  CAS  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17(1):71–84

    Article  Google Scholar 

  • European State of The Climate, Summary 2020 (2021) European Centre for Medium-Range Weather Forecasts (ECMWF) Available online at https://climate.copernicus.eu/esotc/2020

  • Fang X, Zhou B, Tu X, Ma Q, Wu J (2018) “What kind of a science is sustainability science?” An evidence-based reexamination. Sustainability 10(5):1478

    Article  Google Scholar 

  • FAO – Food and Agriculture Organisation of the United Nations (2015) Global forest resources assessment. FAO, Rome, pp 1–253

    Google Scholar 

  • Feng T, Wang C, Hou J, Wang P, Liu Y, Dai Q et al (2018) Effect of inter-basin water transfer on water quality in an urban lake: a combined water quality index algorithm and biophysical modelling approach. Ecol Indic 92:61–71

    Article  CAS  Google Scholar 

  • Finlayson C, Gitay H, Bellio M, van Dam R, Taylor I (2006) Climate variability and change and other pressures on wetlands and waterbirds: impacts and adaptation. In: Waterbirds around the world: a global overview of the conservation, management and research of the world’s waterbird flyways. The Stationery Office, Edinburgh, pp 88–97

    Google Scholar 

  • Flávio HM, Ferreira P, Formigo N, Svendsen JC (2017) Reconciling agriculture and stream restoration in Europe: a review relating to the EU Water Framework Directive. Sci Total Environ 596:378–395

    Article  ADS  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR et al (2005) Global consequences of land use. Science 309(5734):570–574

    Article  ADS  CAS  Google Scholar 

  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang 5(7):673–677

    Article  ADS  Google Scholar 

  • Gardner TA, Barlow J, Chazdon R et al (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecol Lett 12:561–582

    Article  Google Scholar 

  • Giam X (2017) Global biodiversity loss from tropical deforestation. Proc Natl Acad Sci 114(23):5775–5777

    Article  ADS  CAS  Google Scholar 

  • Gísladóttir G, Stocking M (2005) Land degradation and mitigation. Land Degrad Dev 16(2):97–97

    Article  Google Scholar 

  • Gnacadja L (2012) Moving to zero-net rate of land degradation. In: Statement by Executive Secretary. UN Convention to Combat Desertification. (Rio de Janeiro). http://www.unccd.int/Lists/SiteDocumentLibrary/secretariat/2012/UNCCD%20ES%20Statement%20at%20PR%20in%20NY%20on%2026%20March%202012.pdf

  • Goodland R (1995) The concept of environmental sustainability. Annu Rev Ecol Syst 26(1):1–24

    Article  Google Scholar 

  • Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep Sea Res Part II Top Stud Oceanogr 56(17):1201–1212

    Article  ADS  CAS  Google Scholar 

  • Gregg WW, Conkright ME, Ginoux P, O’Reilly JE, Casey NW (2003) Ocean primary production and climate: global decadal changes. Geophys Res Lett 30(15):OCE 3-1–OCE 3-4

    Article  Google Scholar 

  • Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P et al (2013) Sustainable development goals for people and planet. Nature 495(7441):305–307

    Article  ADS  CAS  Google Scholar 

  • Guo C, Xu H (2019) Use of functional distinctness of periphytic ciliates for monitoring water quality in coastal ecosystems. Ecol Indic 96:213–218

    Article  CAS  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C et al (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci 104(31):12942–12947

    Article  ADS  CAS  Google Scholar 

  • Hák T, Janoušková S, Moldan B (2016) Sustainable development goals: a need for relevant indicators. Ecol Indic 60:565–573. https://doi.org/10.1016/j.ecolind.2015.08.003

    Article  Google Scholar 

  • Harden JW, Berhe AA, Torn M, Harte J, Liu S, Stallard RF (2008) Soil erosion: data say C sink. Science 320(5873):178–179

    Article  CAS  Google Scholar 

  • Hayat S, Gupta J (2016) Kinds of freshwater and their relation to ecosystem services and human well-being. Water Policy 18:1229–1246. https://doi.org/10.2166/wp.2016.182

    Article  Google Scholar 

  • Hewitt A, Dominati E, Webb T, Cuthill T (2015) Soil natural capital quantification by the stock adequacy method. Geoderma 241:107–114

    Article  ADS  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328(5985):1523–1528

    Article  ADS  CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742

    Article  ADS  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Solomon S (eds); Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014a) Summary for policymakers Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed C B Field, Cambridge University Press, Cambridge/New York, p 1–32

    Google Scholar 

  • IPCC (2014b) Climate Change, 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2018) Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds)]. World Meteorological Organization, Geneva, Switzerland, 32 pp

    Google Scholar 

  • IPCC – Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • IPCC-AR5-WG1 (2013) Climate Change 2013: the physical science basis – Working Group 1 (WG1) contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5). Cambridge University Press, UK

    Google Scholar 

  • Isbell F, Gonzalez A, Loreau M, Cowles J, Díaz S, Hector A et al (2017) Linking the influence and dependence of people on biodiversity across scales. Nature 546(7656):65–72

    Article  ADS  CAS  Google Scholar 

  • IUCN – International Union for Nature Conservation (2019) IUCN spatial data. http://www.iucnredlist.org/techical-documents/spatial-data

  • Kamaruddin AH, Din AHM, Pa’suya MF, Omar KM (2016, August) Long-term sea level trend from tidal data in Malaysia. In: 2016 7th IEEE control and system graduate research colloquium (ICSGRC), IEEE, p 187–192

    Google Scholar 

  • Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, McCarthy JJ, Schellnhuber HJ, Bolin B, Dickson NM, Faucheux S, Gallopin GC, Gruebler A, Huntley B, Jager J, Jodha NS, Kasperson RE, Mabogunje A, Matson P, Mooney H, Moore B III, O’Riordan T, Svedin U (2001) Sustainability science. Science 292:641–642

    Article  CAS  Google Scholar 

  • Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Glob Ecol Biogeogr 16(5):618–631

    Article  Google Scholar 

  • Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag 352:9–20

    Article  Google Scholar 

  • Körner C, Ohsawa M (2005) Mountain systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington, DC, pp 687–716

    Google Scholar 

  • Koutroulis AG, Papadimitriou LV, Grillakis MG, Tsanis IK, Wyser K, Caesar J, Betts RA (2018) Simulating hydrological impacts under climate change: implications from methodological differences of a Pan European assessment. Water 10(10):1331

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22

    Article  ADS  CAS  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60:708–721

    Article  Google Scholar 

  • Lal R (2012a) Land degradation and pedological processes in a changing climate. Pedologist 55(3):315–325

    CAS  Google Scholar 

  • Lal R (2012b) Restoring degraded lands and the flow of its provisioning services. In: Proceedings of the 4th international conference on drylands, deserts and desertification, p. 65

    Google Scholar 

  • Lal R, Pimentel D (2008) Soil erosion: a carbon sink or source? Science 319:1040–1042. https://doi.org/10.1126/science.319.5866.1040

    Article  CAS  Google Scholar 

  • Lal R, Safriel U, Boer B (2012, May) Zero net land degradation: a new sustainable development goal for Rio+ 20. In: United Nations Convention to Combat Desertification (UNCCD). http://www.unccd.int/Lists/SiteDocumentLibrary/secretariat/2012/Zero%20Net%20Land%20Degradation%20Report%20UNCCD%20May%202012%20background.pdf

  • Laurent A, Olsen SI, Hauschild MZ (2012) Limitations of carbon footprint as indicator of environmental sustainability. Environ Sci Technol 46(7):4100–4108

    Article  ADS  CAS  Google Scholar 

  • Lee DK (2011) Land and soil in the context of a green economy for sustainable development, food security and poverty eradication. The submission of the UNCCD Secretariat to the Preparatory Process for Rio+ 20 UNCCD, Bonn http://www.uncsd2012.org/content/documents/462unccd.pdf

  • Lewis SL, Wheeler CE, Mitchard ET et al (2019) Restoring natural forests is the best way to remove atmospheric carbon. Nature 568:25–28

    Article  ADS  CAS  Google Scholar 

  • Liao C, Qiu J, Chen B, Chen D, Fu B, Georgescu M et al (2020) Advancing landscape sustainability science: theoretical foundation and synergies with innovations in methodology, design, and application. Landsc Ecol 35(1):1–9

    Article  Google Scholar 

  • Liu X, Trogisch S, He JS et al (2018) Tree species richness increases ecosystem carbon storage in subtropical forests. Proc R Soc B 285:20181240

    Article  Google Scholar 

  • Lu Y, Nakicenovic N, Visbeck M, Stevance A-S (2015) Policy: five priorities for the UN sustainable development goals. Nature 520:432–433. https://doi.org/10.1038/520432a

    Article  ADS  Google Scholar 

  • Malmqvist B, Rundle SD, Covich AP, Hildrew AG, Robinson CT, Townsend CR (2008) Prospects for streams and rivers: an ecological perspective. In: Polunin N (ed) Aquatic systems: trends and global perspectives. Cambridge University Press, Cambridge, pp 19–29

    Chapter  Google Scholar 

  • Manju S, Sagar N (2017) Renewable energy integrated desalination: a sustainable solution to overcome future fresh-water scarcity in India. Renew Sust Energ Rev 73:594–609

    Article  Google Scholar 

  • Matthews HS, Hendrickson CT, Weber CL (2008) The importance of carbon footprint estimation boundaries. Environ Sci Technol 42:5839–5842

    Article  ADS  CAS  Google Scholar 

  • Mazor T, Doropoulos C, Schwarzmueller F, Gladish DW, Kumaran N, Merkel K, Di Marco M, Gagic V (2018) Global mismatch of policy and research on drivers of biodiversity loss. Nat Ecol Evol 2:1071–1074

    Article  Google Scholar 

  • MEA – Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mitrică B, Mitrică E, Enciu P, Mocanu I (2017) An approach for forecasting of public water scarcity at the end of the 21st century, in the Timiş Plain of Romania. Technol Forecast Soc Change 118:258–269

    Article  Google Scholar 

  • Momblanch A, Holman IP, Jain SK (2019) Current practice and recommendations for modelling global change impacts on water resource in the Himalayas. Water 11(6):1303

    Article  Google Scholar 

  • Murray DL, Peers MJ, Majchrzak YN, Wehtje M, Ferreira C, Pickles RS et al (2017) Continental divide: predicting climate-mediated fragmentation and biodiversity loss in the boreal forest. PLoS One 12(5):e0176706

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, Vries BD, Fenhann J, Gaffin S et al (2000) Special report on emissions scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci 104(4):1266–1271

    Article  ADS  Google Scholar 

  • Oldeman LR (1998) Soil degradation: a threat to food security? Report 98/01. International Soil Reference and Information Centre, Wageningen

    Google Scholar 

  • Opdam P, Luque S, Nassauer J, Verburg PH, Wu J (2018) How can landscape ecology contribute to sustainability science? Landsc Ecol 33(1):1–7

    Article  Google Scholar 

  • Owusu PA, Asumadu-Sarkodie S, Ameyo P (2016) A review of Ghana’s water resource management and the future prospect. Cogent Eng 3. https://doi.org/10.1080/23311916.2016.1164275

  • Pan Y, Birdsey RA, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  ADS  CAS  Google Scholar 

  • Paredes I, Ramírez F, Forero MG, Green AJ (2019) Stable isotopes in helophytes reflect anthropogenic nitrogen pollution in entry streams at the Doñana World Heritage Site. Ecol Indic 97:130–140

    Article  CAS  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332)

    Google Scholar 

  • Pereira P, Ferreira A, Pariente S, Cerda A, Walsh RPD, Keesstra S (2016) Preface: urban soils and sediments. J Soils Sediments 16:2493–2499

    Article  Google Scholar 

  • Pereira P, Brevik E, Munoz-Rojas M, Miller B, Smetanova A, Depellegrin D, Misiune I, Novara A, Cerda A (2017) Soil mapping and process modelling for sustainable land management. In: Pereira P, Brevik E, Munoz-Rojas M, Miller B (eds) Soil mapping and process modelling for sustainable land use management. Elsevier, pp 29–60

    Chapter  Google Scholar 

  • Pereira P, Bogunovic I, Muñoz-Rojas M, Brevik EC (2018) Soil ecosystem services, sustainability, valuation and management. Curr Opin Environ Sci Health 5:7–13

    Article  Google Scholar 

  • Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA (2013) Marine taxa track local climate velocities. Science 341(6151):1239–1242

    Article  ADS  CAS  Google Scholar 

  • Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35(3):L03618

    Article  ADS  Google Scholar 

  • Robinson DA, Hockley N, Cooper DM, Emmett BA, Keith AM, Lebron I et al (2013) Natural capital and ecosystem services, developing an appropriate soils framework as a basis for valuation. Soil Biol Biochem 57:1023–1033

    Article  CAS  Google Scholar 

  • Robinson DA, Fraser I, Dominati EJ, Davíðsdóttir B, Jónsson JOG, Jones L et al (2014) On the value of soil resources in the context of natural capital and ecosystem service delivery. Soil Sci Soc Am J 78(3):685–700

    Article  CAS  Google Scholar 

  • Runting RK, Bryan BA, Dee LE, Maseyk FJ, Mandle L, Hamel P et al (2017) Incorporating climate change into ecosystem service assessments and decisions: a review. Glob Chang Biol 23(1):28–41

    Article  ADS  Google Scholar 

  • Salmoral G, Rey D, Rudd A, de Margon P, Holman I (2019) A probabilistic risk assessment of the national economic impacts of regulatory drought management on irrigated agriculture. Earth Future 7(2):178–196

    Article  ADS  Google Scholar 

  • Scheurer K, Alewell C, Bänninger D, Burkhardt-Holm P (2009) Climate and land-use changes affecting river sediment and brown trout in alpine countries—a review. Environ Sci Pollut Res 16(2):232–242

    Article  Google Scholar 

  • Schröter M, Koellner T, Alkemade R, Arnhold S, Bagstad KJ, Erb KH et al (2018) Interregional flows of ecosystem services: concepts, typology and four cases. Ecosyst Serv 31:231–241

    Article  Google Scholar 

  • State of the Climate in Africa 2020 (2021) World Meteorological Organization, (WMO-No. 1275) Available online at https://library.wmo.int/index.php?lvl=notice_display&id=21973#.Ye7uzf5Bzb0

  • State of the Climate in Asia 2020 (2021) World Meteorological Organization, (WMO-No. 1273) Available online at https://library.wmo.int/index.php?lvl=notice_display&id=21977#.Ye7tlv5Bzb1.

  • State of the Climate in Latin America and the Caribbean 2020 (2021) World Meteorological Organization, (WMO-No. 1272) Available online at https://library.wmo.int/index.php?lvl=notice_display&id=21926#.Ye7ue_5Bzb0

  • State of the Climate in South-West Pacific 2020 (2021) World Meteorological Organization, (WMO-No. 1276) Available online at https://library.wmo.int/index.php?lvl=notice_display&id=21990#.Ye7vJf5Bzb0

  • Stavi I, Lal R (2013) Agriculture and greenhouse gases, a common tragedy. A review. Agron Sustain Dev 33(2):275–289

    Article  CAS  Google Scholar 

  • Stavi I, Lal R (2015) Achieving zero net land degradation: challenges and opportunities. J Arid Environ 112:44–51

    Article  Google Scholar 

  • Steffen W, Sanderson A, Tyson PD, Jager J, Matson PA, Moore B III, Oldfield F, Richardson K, Schellnhuber HJ, Turner BL, Wasson RJ (2004) Global change and the earth system: a planet under pressure. Springer, Berlin

    Google Scholar 

  • UNCCD Zero Net Land Degradation, a Sustainable Development Goal for Rio+20 (2012). http://www.unccd.int/Lists/SiteDocumentLibrary/Rio+20/UNCCD_PolicyBrief_ZeroNetLandDegradation.pdf

  • Wackernagel M, Rees WE (1996) Our ecological footprint: reducing human impact on the earth. New Society, Gabriola Island

    Google Scholar 

  • Wackernagel M, Onisto L, Bello P, Linares AC, Falfan ISL, Garcia JM, Guerrero AIS, Guerrero CS (1999) National natural capital accounting with the ecological footprint concept. Ecol Econ 29(3):375–390

    Article  Google Scholar 

  • Wang MH, Li J, Ho YS (2011) Research articles published in water resources journals: a bibliometric analysis. Desalin Water Treat 28(1-3):353–365

    Article  Google Scholar 

  • WCED (1987) Our common future. Oxford University Press, Oxford

    Google Scholar 

  • Wiedmann T, Minx J (2007) A definition of ‘carbon footprint’: integrated sustainability analysis UK. pp 1–11

    Google Scholar 

  • Wilcox BP, Fox WE, Prcin LJ, McAlister J, Wolfe J, Thomas DM et al (2012) Contour ripping is more beneficial than composted manure for restoring degraded rangelands in Central Texas. J Environ Manag 111:87–95

    Article  Google Scholar 

  • Wu J (2013) Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landsc Ecol 28:999–1023

    Article  Google Scholar 

  • Wu J (2019) Linking landscape, land system and design approaches to achieve sustainability. J Land Use Sci 14:173–189

    Article  CAS  Google Scholar 

  • Yasuhara M, Danovaro R (2016) Temperature impacts on deep-sea biodiversity. Biol Rev 91(2):275–287. https://doi.org/10.1111/brv.12169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Chatterjee, U., David Raj, A. (2022). Ecological Footprints in Changing Climate: An Overview. In: Chatterjee, U., Akanwa, A.O., Kumar, S., Singh, S.K., Dutta Roy, A. (eds) Ecological Footprints of Climate Change . Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-15501-7_1

Download citation

Publish with us

Policies and ethics