Skip to main content

Cardiovascular Complications of Long COVID-19: Prevalence, Diagnosis, and Risk Factors

  • Chapter
  • First Online:
Cardiovascular Complications of COVID-19

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Some time has already passed since the COVID-19 pandemic began in 2019, but little is known about the long-term effects of SARS-CoV-2 infection on heart and blood vessel function. SARS-CoV-2 infection was initially thought to be associated with acute respiratory distress syndrome, it has been observed over time that the COVID-19, is actually a multi-organ disease that can also induce cardiovascular symptoms, including myocardial infarction, myocarditis, stress cardiomyopathy, heart failure, arrhythmias, and secondary heart injury. Several possible mechanisms underlying the heart muscle injury related to COVID-19 have been proposed, i.e., direct cytotoxic damage, dysregulation of the renin-angiotensin-aldosterone system, endothelial inflammation, and dysregulation of the immune response. The management of long COVID-19 effects is largely based on conservative treatment, consisting in the elimination of risk factors related to the development of cardiovascular diseases. In this chapter, we discuss the cardiovascular complications of long COVID-19, with an emphasis on prevalence, diagnosis, and risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniou KM, Vasarmidi E, Russell A-M, et al. European Respiratory society statement on long COVID-19 follow-up. Eur Respir J. 2022;60:2102174. https://doi.org/10.1183/13993003.02174-2021.

    Article  CAS  Google Scholar 

  2. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601–15. https://doi.org/10.1038/s41591-021-01283-z.

    Article  CAS  Google Scholar 

  3. Chidambaram V, Kumar A, Calcaterra G, et al. Persistent cardiac injury–an important component of long COVID-19 syndrome. EBioMedicine. 2022;76:103821.

    Google Scholar 

  4. Callard F, Perego E. How and why patients made long Covid. Soc Sci Med. 2021;268:113426.

    Article  Google Scholar 

  5. NICE. COVID-19 rapid guideline: managing the long-term effects of COVID-19. NICE guideline [NG188]. https://www.nice.org.uk/guidance/ng188.

  6. Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV, WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2021;S1473-3099:00703–9. https://doi.org/10.1016/S1473-3099(21)00703-9.

    Article  Google Scholar 

  7. Jimeno-Almazån A, Pallarés JG, Buendía-Romero A, et al. Post-COVID-19 syndrome and the potential benefits of exercise. Int J Environ Res Public Health. 2021;18(10):5329.

    Article  Google Scholar 

  8. Carfi A, Bernabei R, Landi F. Gemelli against COVID-19 post-acute care study group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603–5.

    Article  CAS  Google Scholar 

  9. Antoniou KM, Vasarmidi E, Russell A-M, Andrejak C, et al. European Respiratory Society statement on long COVID-19 follow-up. Eur Respir J. 2022;60:2102174. https://doi.org/10.1183/13993003.02174-2021.

    Article  CAS  Google Scholar 

  10. Ganesh R, Grach SL, Ghosh AK, Bierle DM, et al. The female-predominant persistent immune dysregulation of the post-COVID syndrome. Mayo Clin Proc. 2022;S0025-6196(21):00888. https://doi.org/10.1016/j.mayocp.2021.11.033.

    Article  CAS  Google Scholar 

  11. Yelin D, Moschopoulos CD, Margalit I, Gkrania-Klotsas E, et al. ESCMID rapid guidelines for assessment and management of long COVID. Clin Microbiol Infect. 2022;28(7):955–72. https://doi.org/10.1016/j.cmi.2022.02.018.

    Article  CAS  Google Scholar 

  12. Peghin M, Palese A, Venturini M, MartinoM D, et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. Clin Microbiol Infect. 2021;27(10):1507–13. https://doi.org/10.1016/j.cmi.2021.05.033.

    Article  CAS  Google Scholar 

  13. Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, et al. Attributes and predictors of long COVID. Nat Med. 2021;27:626–31. Pmid:33692530. https://doi.org/10.1038/s41591-021-01292-y.

    Article  CAS  Google Scholar 

  14. Augustin M, Schommers P, Stecher M, Dewald F, Gieselmann L, Gruell H, et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg Health Eur. 2021;6:100122.

    Article  Google Scholar 

  15. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–32.

    Article  CAS  Google Scholar 

  16. Dryden M, Vika C. Post acute sequelae of SARS-CoV-2 infection (PASC)–formally long COVID. 2021. https://www.nioh.ac.za/wp-content/uploads/2021/04/NIOH-Webinar-Invitation_-COVID-19-_Long-Covid-and-the-workplace_22April-2021-Dr-Dryden.pdf.

  17. Naik S, Soneja M, Haldar S, Soneja M, Mundadan NG, Garg P, et al. Post COVID-19 sequelae: a prospective observational study from northern India. Drug Discov Ther. 2021;15:254–60.

    Article  CAS  Google Scholar 

  18. Mahmud R, Rahman MM, Rassel MA, Monayem FB, Sayeed SJB, Islam MS, et al. Post-COVID-19 syndrome among symptomatic COVID-19 patients: a prospective cohort study in a Tertiary Care Center of Bangladesh. PLoS One. 2021;16:e0249644.

    Article  CAS  Google Scholar 

  19. Lund LC, Hallas J, Nielsen H, Koch A, Mogensen SH, Brun NC, et al. Post-acute effects of SARS-CoV-2 infection in individuals not requiring hospital admission: a Danish population–based cohort study. Lancet Infect Dis. 2021;21:1373–82.

    Article  CAS  Google Scholar 

  20. Venturelli S, Benatti SV, Casati M, Binda F, Zuglian G, Imeri G, et al. Surviving COVID-19 in Bergamo province: a post-acute out patient re-evaluation. Epidemiol Infect. 2021;149:e32.

    Article  CAS  Google Scholar 

  21. Logue JK, Franko NM, McCulloch DJ, McDonald D, Magedson A, Wolf CR, et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open. 2021;4:e210830.

    Article  Google Scholar 

  22. Blomberg B, Mohn KG-I, Brokstad KA, Zhou F, Linchausen DW, Hansen B-A, et al. Long COVID in a prospective cohort of home-isolated patients. Nat Med. 2021;27:1607–13.

    Article  CAS  Google Scholar 

  23. Hossain MA, Hossain KMA, Saunders K, Uddin Z, Walton LM, Raigangar V, et al. Prevalence of long COVID symptoms in Bangladesh: a prospective inception cohort study of COVID-19 survivors. BMJ Glob Health. 2021;6:e006838.

    Article  Google Scholar 

  24. Wu X, Liu X, Zhou Y, Yu H, Li R, Zhan Q, et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19 – related hospitalisation: a prospective study. Lancet Respir Med. 2021;9:747–54.

    Article  CAS  Google Scholar 

  25. Cassar MP, Tunnicliffe EM, Petousi N, Lewandowski AJ, Xie C, Mahmod M, et al. Symptom persistence despite improvement in cardiopulmonary health–insights from longitudinal CMR, CPET and lung function testing post-COVID-19. EClin Med. 2021;41:101159.

    Google Scholar 

  26. Raman B, Bluemke DA, LĂŒscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43(11):1157–72.

    Article  CAS  Google Scholar 

  27. Chilazi M, Duffy EY, Thakkar A, et al. COVID and cardiovascular disease: what we know in 2021. Curr Atheroscler Rep. 2021;23:37.

    Article  CAS  Google Scholar 

  28. Tenforde MW, Kim SS, Lindsell CJ, Billig Rose E, Shapiro NI, Files DC, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, march-June 2020. MMWR Morb Mortal Wkly Rep. 2020;69(30):993–8.

    Article  CAS  Google Scholar 

  29. Crook H, Raza S, Nowell J, Young M, Edison P. Long covid—mechanisms, risk factors, and management. BMJ. 2021;374:n1648. https://doi.org/10.1136/bmj.n1648.

    Article  Google Scholar 

  30. Grosso G. Obesity during COVID-19: an underrated pandemic? EClin Med. 2021;39:101062.

    Google Scholar 

  31. NHS Digital England. Health Survey for England. 2019. https://digital.nhs.uk/dataand-information/publications/statistical/health-survey-for-england/2019.

  32. NHS Digital England. National child measurement programme 2019. 2021. https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurementprogramme/2019-20-school-year.

  33. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics—2021 update. Circulation. 2021;143:e254–743.

    Article  Google Scholar 

  34. Fogarty H, Townsend L, Morrin H, Ahmad A, Comerford C, Karampini E, et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost. 2021;19:2546–53.

    Article  CAS  Google Scholar 

  35. Thompson EJ, Williams DM, Walker AJ, Mitchell RE, Niedzwiedz CL, Yang TC, et al. Risk factors for long COVID: analyses of 10 longitudinal studies and electronic health records in the UK. medRxiv. https://doi.org/10.1101/2021.06.24.21259277.

  36. Chippa V, Aleem A, Anjum F. Post acute coronavirus (COVID-19) syndrome. In: StatPearls [Internet]. Treasure Island, FL: StatPearls; 2022. https://www.ncbi.nlm.nih.gov/books/NBK570608/.

  37. Kamal M, Abo Omirah M, Hussein A, Saeed H. Assessment and characterisation of post-COVID-19 manifestations. Int J Clin Pract. 2021;75:e13746. https://doi.org/10.1111/ijcp.13746.

    Article  CAS  Google Scholar 

  38. UK Office for National Statistics. Prevalence of long COVID symptoms and COVID-19 complications. 2020.

    Google Scholar 

  39. Halpin SJ, McIvor C, Whyatt G, Adams A, Harvey O, McLean L, Walshaw C, Kemp S, Corrado J, Singh R, Collins T, O'Connor RJ, Sivan M. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: a cross-sectional evaluation. J Med Virol. 2021;93(2):1013–22.

    Article  CAS  Google Scholar 

  40. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection. Ann Intern Med. 2020;173:362–7. https://doi.org/10.7326/m20-3012.

    Article  Google Scholar 

  41. Carfì A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324:603–5. https://doi.org/10.1001/jama.2020.12603.

    Article  CAS  Google Scholar 

  42. Yelin D, Moschopoulos CD, Margalit L, Gkrania-Klotsas E, Landi F, et al. ESCMID rapid guidelines for assessment and management of long COVID. Clin Microbiol Infect. 2022;28(7):955–72. https://doi.org/10.1016/j.cmi.2022.02.018.

    Article  CAS  Google Scholar 

  43. Jennings G, Monaghan A, Xue F, Mockler D, Romero-Ortuño R. A systematic review of persistent symptoms and residual abnormal functioning following acute COVID-19: ongoing symptomatic phase vs. post-COVID-19 syndrome. J Clin Med. 2021;10:5913. https://doi.org/10.3390/jcm10245913.

    Article  CAS  Google Scholar 

  44. Goërtz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6:00542. https://doi.org/10.1183/23120541.00542-2020.

    Article  Google Scholar 

  45. Islam MF, Cotler J, Jason LA. Post-viral fatigue and COVID-19: lessons from past epidemics. Fatigue. 2020;8:61–9. https://doi.org/10.1080/21641846.2020.1778227.

    Article  Google Scholar 

  46. Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15:e0240784. https://doi.org/10.1371/journal.pone.0240784.

    Article  CAS  Google Scholar 

  47. Wostyn P. COVID-19 and chronic fatigue syndrome: is the worst yet to come? Med Hypotheses. 2021;146:110469. https://doi.org/10.1016/j.mehy.2020.110469.

    Article  CAS  Google Scholar 

  48. Guedj E, Million M, Dudouet P, et al. 18F-FDG brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for persistent/delayed disorders? Eur J Nucl Med Mol Imaging. 2021;48:592–5. https://doi.org/10.1007/s00259-020-04973-x.

    Article  CAS  Google Scholar 

  49. Morgul E, Bener A, Atak M, et al. COVID-19 pandemic and psychological fatigue in Turkey. Int J Soc Psychiatry. 2021;67:128–35. https://doi.org/10.1177/0020764020941889.

    Article  Google Scholar 

  50. Ferrandi PJ, Alway SE, Mohamed JS. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J Appl Physiol. 1985;2020(129):864–7. https://doi.org/10.1152/japplphysiol.00321.2020.

    Article  CAS  Google Scholar 

  51. Kempuraj D, Selvakumar GP, Ahmed ME, et al. Covid-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist. 2020;26:402–14. https://doi.org/10.1177/1073858420941476.

    Article  CAS  Google Scholar 

  52. Han X, Fan Y, Alwalid O, et al. Six-month follow-up chest CT findings after severe covid-19 pneumonia. Radiology. 2021;299:E177–86. https://doi.org/10.1148/radiol.2021203153.

    Article  Google Scholar 

  53. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18:1421–4. https://doi.org/10.1111/jth.14830.

    Article  CAS  Google Scholar 

  54. Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020;7:875–82. https://doi.org/10.1016/S2215-0366(20)30287-X.

    Article  Google Scholar 

  55. Maxwell E. National Institute for Health Research. Living with Covid-19: a dynamic review of the evidence around ongoing covid-19 symptoms (often called Long Covid). 2020.

    Google Scholar 

  56. Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369:1306–16. https://doi.org/10.1056/NEJMoa1301372.

    Article  CAS  Google Scholar 

  57. Girard TD, Thompson JL, Pandharipande PP, et al. Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir Med. 2018;6:213–22. https://doi.org/10.1016/S2213-2600(18)30062-6.

    Article  Google Scholar 

  58. Dennis A, Wamil M, Kapur S, et al. Multi-organ impairment in low-risk individuals with long COVID. MedRxiv. 2020; 10.14.20212555 [preprint]. https://doi.org/10.1101/2020.10.14.20212555.

  59. Tomasoni D, Bai F, Castoldi R, et al. Anxiety and depression symptoms after virological clearance of COVID-19: a cross-sectional study in Milan, Italy. J Med Virol. 2021;93:1175–9. https://doi.org/10.1002/jmv.26459.

    Article  CAS  Google Scholar 

  60. Chamberlain SR, Grant JE, Trender W, Hellyer P, Hampshire A. Post-traumatic stress disorder symptoms in COVID-19 survivors: online population survey. BJPsych Open. 2021;7:e47. https://doi.org/10.1192/bjo.2021.3.

    Article  Google Scholar 

  61. Taquet M, Luciano S, Geddes JR, Harrison PJ. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry. 2021;8:130–40. https://doi.org/10.1016/S2215-0366(20)30462-4.

    Article  Google Scholar 

  62. Creese B, Khan Z, Henley W, et al. Loneliness, physical activity, and mental health during COVID-19: a longitudinal analysis of depression and anxiety in adults over the age of 50 between 2015 and 2020. Int Psychogeriatr. 2021;33:505–14. https://doi.org/10.1017/S1041610220004135.

    Article  Google Scholar 

  63. Manca R, De Marco M, Venneri A. The impact of COVID-19 infection and enforced prolonged social isolation on neuropsychiatric symptoms in older adults with and without dementia: a review. Front Psych. 2020;11:585540. https://doi.org/10.3389/fpsyt.2020.585540.

    Article  Google Scholar 

  64. Yachou Y, El Idrissi A, Belapasov V, Ait BS. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020;41:2657–69. https://doi.org/10.1007/s10072-020-04575-3.

    Article  Google Scholar 

  65. Lee SY, Song KJ, Lim CS, et al. Operation and management of Seoul Metropolitan City community treatment center for mild condition COVID-19 patients. J Korean Med Sci. 2020;35:e367. https://doi.org/10.3346/jkms.2020.35.e367.

    Article  CAS  Google Scholar 

  66. Otte MS, Eckel HNC, Poluschkin L, Klussmann JP, Luers JC. Olfactory dysfunction in patients after recovering from COVID-19. Acta Otolaryngol. 2020;140:1032–5. https://doi.org/10.1080/00016489.2020.1811999.

    Article  CAS  Google Scholar 

  67. Paderno A, Mattavelli D, Rampinelli V, et al. Olfactory and gustatory outcomes in COVID-19: a prospective evaluation in nonhospitalized subjects. Otolaryngol Head Neck Surg. 2020;163:1144–9. https://doi.org/10.1177/0194599820939538.

    Article  Google Scholar 

  68. Mastrangelo A, Bonato M, Cinque P. Smell and taste disorders in COVID 19: from pathogenesis to clinical features and outcomes. Neurosci Lett. 2021;748:135694. https://doi.org/10.1016/j.neulet.2021.135694.

    Article  CAS  Google Scholar 

  69. Richardson S, Hirsch JS, Narasimhan M, et al. The Northwell COVID-19 research consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323:2052–9. https://doi.org/10.1001/jama.2020.6775.

    Article  CAS  Google Scholar 

  70. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181:1016–1035.e19.

    Article  CAS  Google Scholar 

  71. Liu H, Wang Z, Sun H, Teng T, Li Y, Zhou X, et al. Thrombosis and coagulopathy in COVID-19: current understanding and implications for antithrombotic treatment in patients treated with percutaneous coronary intervention. Front Cardiovasc Med. 2021;7:599334.

    Article  Google Scholar 

  72. Ashton R, Ansdell P, Hume E, et al. COVID-19 and the long-term cardio-respiratory and metabolic health complications. Rev Cardiovasc Med. 2022;23(2):053.

    Article  Google Scholar 

  73. Cenko E, Badimon L, Bugiardini R, Claeys MJ, De Luca G, de Wit C, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC working group on Coronary Pathophysiology & Microcirculation, ESC working group on thrombosis and the Association for Acute CardioVascular care (ACVC), in collaboration with the European heart rhythm association (EHRA). Cardiovasc Res. 2021;117:2705–29.

    Article  CAS  Google Scholar 

  74. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5:831–40. https://doi.org/10.1001/jamacardio.2020.1286.

    Article  Google Scholar 

  75. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and cardiovascular disease. Circulation. 2020;141:1648–55.

    Article  CAS  Google Scholar 

  76. Team, Epidemiology. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China. China CDC Wkly. 2020;2020(2):113–22.

    Google Scholar 

  77. Chung MK, Zidar DA, Bristow MR, Cameron SJ, Chan T, Harding CV, et al. COVID-19 and cardiovascular disease. Circ Res. 2021;128:1214–36.

    Article  CAS  Google Scholar 

  78. Lim GB. Myocardial injury in patients with COVID-19. Nat Rev Cardiol. 2020;17:454.

    Article  CAS  Google Scholar 

  79. Puntmann VO, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1265–73.

    Article  Google Scholar 

  80. Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021;9:129. https://doi.org/10.1016/s2213-2600(21)00031-x.

    Article  CAS  Google Scholar 

  81. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11:16144. https://doi.org/10.1038/s41598-021-95565-8.

    Article  CAS  Google Scholar 

  82. MartĂ­nez-Salazar B, Holwerda M, StĂŒdle CH, et al. COVID-19 and the vasculature: current aspects and long-term consequences. Front Cell Dev Biol. 2022;10:824851. https://doi.org/10.3389/fcell.2022.824851.

    Article  Google Scholar 

  83. Carvalho-Schneider C, Laurent E, Lemaignen A, Beaufils E, Bourbao-Tournois C, Laribi S, et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin Microbiol Infect. 2021;27:258–63. https://doi.org/10.1016/j.cmi.2020.09.052.

    Article  CAS  Google Scholar 

  84. Romero-Duarte Á, Rivera-Izquierdo M, Guerrero-Fernåndez de Alba I, Pérez-Contreras M, Fernåndez-Martínez NF, Ruiz-Montero R, et al. Sequelae, persistent symptomatology and outcomes after COVID-19 hospitalization: the ANCOHVID multicentre 6-month follow-up study. BMC Med. 2021;19:129. https://doi.org/10.1186/s12916-021-02003-7.

    Article  CAS  Google Scholar 

  85. Coromilas EJ, Kochav S, Goldenthal I, Biviano A, Garan H, Goldbarg S, et al. Worldwide survey of COVID-19-associated arrhythmias. Circ Arrhythm Electrophysiol. 2021;14:e009458. https://doi.org/10.1161/CIRCEP.120.009458.

    Article  CAS  Google Scholar 

  86. Johansson M, Stahlberg M, Runold M, Nygren-Bonnier M, Nilsson J, Olshansky B, et al. Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep. 2021;3(4):573–80. https://doi.org/10.1016/j.jaccas.2021.01.009.

    Article  Google Scholar 

  87. Blitshteyn S, Whitelaw S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol Res. 2021;69:205–11. https://doi.org/10.1007/s12026-021-09185-5.

    Article  CAS  Google Scholar 

  88. Lo YL. COVID-19, fatigue, and dysautonomia. J Med Virol. 2021;93(3):1213. https://doi.org/10.1002/jmv.26552.

    Article  CAS  Google Scholar 

  89. Rajpal S, et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 2021;6:116–8.

    Google Scholar 

  90. Knight DS, Kotecha T, Razvi Y, Chacko L, Brown JT, Jeetley PS, et al. Covid-19. Circulation. 2020;142:1120–2. https://doi.org/10.1161/circulationaha.120.049252.

    Article  CAS  Google Scholar 

  91. Joy G, Artico J, Kurdi H, Seraphim A, Lau C, Thornton GD, et al. Prospective case-control study of cardiovascular abnormalities 6 months following mild COVID-19 in healthcare workers. JACC Cardiovasc Imaging. 2021;14:2155–66. https://doi.org/10.1016/j.jcmg.2021.04.011.

    Article  Google Scholar 

  92. Daniels CJ, Rajpal S, Greenshields JT, Rosenthal GL, Chung EH, Terrin M, et al. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection. JAMA Cardiol. 2021;6:1078–87. https://doi.org/10.1001/jamacardio.2021.2065.

    Article  Google Scholar 

  93. Singer ME, Taub IB, Kaelber DC. Risk of myocarditis from COVID-19 infection in people under age 20: a population-based analysis. medRxiv. 2021;2021:1. https://doi.org/10.1101/2021.07.23.21260998.

    Article  CAS  Google Scholar 

  94. Manocha KK, Kirzner J, Ying X, Yeo I, Peltzer B, Ang B, et al. Troponin and other biomarker levels and outcomes among patients hospitalized with COVID-19: derivation and validation of the HA2T2 COVID-19 mortality risk score. J Am Heart Assoc. 2021;10:e018477. https://doi.org/10.1161/JAHA.120.018477.

    Article  CAS  Google Scholar 

  95. Caro-CodĂłn J, Rey JR, Buño A, Iniesta AM, Rosillo SO, Castrejon-Castrejon S, et al. Characterization of myocardial injury in a cohort of patients with SARS-CoV-2 infection. Med Clin (Barc). 2021;157:274–80. https://doi.org/10.1016/j.medcli.2021.02.001.

    Article  CAS  Google Scholar 

  96. Townsend L, Fogarty H, Dyer A, Martin-Loeches I, Bannan C, Nadarajan P, et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J Thromb Haemost. 2021;19:1064–70. https://doi.org/10.1111/jth.15267.

    Article  CAS  Google Scholar 

  97. Bangalore S, Sharma A, Slotwiner A, Yatskar L, Harari R, et al. ST-segment elevation in patients with COVID-19—a case series. N Engl J Med. 2020;382:2478–80.

    Article  Google Scholar 

  98. Inciardi RM, Lupi L, Zaccone G, Italia L, Raffo M, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:819–24.

    Article  Google Scholar 

  99. van Osch D, Asselbergs FW, Teske AJ. Takotsubo cardiomyopathy in COVID-19: a case report. Haemodynamic and therapeutic considerations. Eur Heart J Case Rep. 2020;4:1–6.

    Article  Google Scholar 

  100. Chitsazan M, Amin A, Chitsazan M, Ziaie N, Amri Maleh P, et al. Heart failure with preserved ejection fraction in coronavirus disease 2019 patients: the promising role of diuretic therapy in critically ill patients. ESC Heart Fail. 2021;8:1610–4.

    Article  Google Scholar 

  101. Jirak P, Larbig R, Shomanova Z, Frob EJ, Dankl D, Torgersen C, et al. Myocardial injury in severe COVID-19 is similar to pneumonias of other origin: results from a multicentre study. ESC Heart Fail. 2021;8:37–46.

    Article  Google Scholar 

  102. Visco V, Vitale C, Rispoli A, Izzo C, Virtuoso N, Ferruzzi GJ, et al. Post-COVID-19 syndrome: involvement and interactions between respiratory, cardiovascular and nervous systems. J Clin Med. 2022;11:524. https://doi.org/10.3390/jcm11030524.

    Article  CAS  Google Scholar 

  103. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383:120–8. https://doi.org/10.1056/nejmoa2015432.

    Article  CAS  Google Scholar 

  104. Roncati L, Ligabue G, Fabbiani L, Malagoli C, Gallo G, Lusenti B, et al. Type 3 hypersensitivity in COVID-19 vasculitis. Clin Immunol. 2020;217:108487. https://doi.org/10.1016/j.clim.2020.108487.

    Article  CAS  Google Scholar 

  105. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269–70. https://doi.org/10.1038/s41577-020-0308-3.

    Article  CAS  Google Scholar 

  106. Norooznezhad AH, Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res. 2021;137:104188. https://doi.org/10.1016/j.mvr.2021.104188.

    Article  CAS  Google Scholar 

  107. Sollini M, Ciccarelli M, Cecconi M, Aghemo A, Morelli P, Gelardi F, et al. Vasculitis changes in COVID-19 survivors with persistent symptoms: an [18F]FDG-PET/CT study. Eur J Nucl Med Mol Imaging. 2021;48:1460–6. https://doi.org/10.1007/s00259-020-05084-3.

    Article  CAS  Google Scholar 

  108. Ratchford SM, Stickford JL, Province VM, Stute N, Augenreich MA, Koontz LK, et al. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol. 2021;320:H404–10. https://doi.org/10.1152/ajpheart.00897.2020.

    Article  CAS  Google Scholar 

  109. Szeghy RE, Province VM, Stute NL, Augenreich MA, Koontz LK, Stickford JL, et al. Carotid stiffness, intima-media thickness and aortic augmentation index among adults with SARS-CoV-2. Exp Physiol. 2021;1:1. https://doi.org/10.1113/EP089481.

    Article  Google Scholar 

  110. Nandadeva D, Young BE, Stephens BY, Grotle A-K, Skow RJ, Middleton AJ, et al. Blunted peripheral but not cerebral vasodilator function in young otherwise healthy adults with persistent symptoms following COVID-19. Am J Physiol Heart Circ Physiol. 2021;321:H479–84. https://doi.org/10.1152/ajpheart.00368.2021.

    Article  CAS  Google Scholar 

  111. Pelliccia A, Solberg EE, Papadakis M, Adami PE, Biffi A, Caselli S, et al. Recommendations for participation in competitive and leisure time sport in athletes with cardiomyopathies, myocarditis, and pericarditis: position statement of the sport cardiology section of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2019;40:19–33.

    Article  Google Scholar 

  112. Bozkurt B, Colvin M, Cook J, Cooper LT, Deswal A, Fonarow GC, et al. Current diagnostic and treatment strategies for specific dilated cardiomyopathies: a scientific statement from the American Heart Association. Circulation. 2016;134:e579–646.

    Article  Google Scholar 

  113. Ammirati E, Frigerio M, Adler ED, Basso C, Birnie DH, Brambatti M, et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail. 2020;13:e007405.

    Article  Google Scholar 

  114. University College London. Long Covid: UCL leads ÂŁ8m studies into treatments and diagnosis. 2021. https://www.ucl.ac.uk/news/headlines/2021/jul/ucl-leads-ps8mstudies-long-covid-treatments-and-diagnosis.

  115. Collet JP, Thiele H, Barbato E, BarthĂ©lĂ©my O, Bauersachs J, Bhatt DL, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2021;42:1289–367.

    Article  Google Scholar 

  116. Ezra AA, Nanette KW, Ralph GB, Donald EC, Theodore GG, David RH, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes. J Am Coll Cardiol. 2014;64:e139–228.

    Article  Google Scholar 

  117. Crespo-Leiro MG, Metra M, Lund LH, Milicic D, Costanzo MR, Filippatos G, et al. Advanced heart failure: a position statement of the heart failure association of the European Society of Cardiology. Eur J Heart Fail. 2018;20:1505–35.

    Article  Google Scholar 

  118. ClinicalTrials.gov. Helping alleviate the longer-term consequences of COVID-19 (HEAL-COVID) (HEAL-COVID) 2021. 2021. https://clinicaltrials.gov/ct2/ show/NCT04801940.

  119. Greenhalgh T, Knight M, A’Court C, Buxton M, Husain L. Management of postacute Covid-19 in primary care. BMJ. 2020;370:m3026.

    Article  Google Scholar 

  120. Sawadogo W, Tsegaye M, Gizaw A, et al. Overweight and obesity as risk factors for COVID-19-associated hospitalisations and death: systematic review and meta-analysis. BMJ Nutr Prev Health. 2022;5:e000375. https://doi.org/10.1136/bmjnph-2021-000375.

    Article  Google Scholar 

  121. Koenen M, Hill MA, Cohen P, Obesity SJ. Adipose tissue and vascular dysfunction. Circ Res. 2021;128:951–68.

    Article  CAS  Google Scholar 

  122. Gloeckl R, Leitl D, Jarosch I, Schneeberger T, Nell C, Stenzel N, et al. Benefits of pulmonary rehabilitation in COVID-19: a prospective observational cohort study. ERJ Open Res. 2021;7:00108–2021.

    Article  Google Scholar 

  123. Asly M, Hazim A. Rehabilitation of post-COVID-19 patients. Pan Afr Med J. 2020;36:168.

    Article  Google Scholar 

  124. Habersaat KB, Betsch C, Danchin M, Sunstein CR, Böhm R, Falk A, et al. Ten considerations for effectively managing the COVID-19 transition. Nat Hum Behav. 2020;4:677–87.

    Article  Google Scholar 

  125. Sivan M, Taylor S. NICE guideline on long covid. BMJ. 2020;371:m4938. https://doi.org/10.1136/bmj.m4938.

    Article  Google Scholar 

  126. SisĂł-Almirall A, Brito-ZerĂłn P, Conangla FerrĂ­n L, Kostov B, Moragas Moreno A, Mestres J, et al. Long Covid-19: proposed primary care clinical guidelines for diagnosis and disease management. Int J Environ Res Public Health. 2021;18:4350. https://doi.org/10.3390/ijerph18084350.

    Article  CAS  Google Scholar 

  127. Haute autorite de sante. Fiches rĂ©ponses rapides dans le cadre du COVID-19 de la HAS-SymptĂŽmes prolongĂ©s suite Ă  une Covid-19 de l’adulte-Diagnostic et prise en charge. 2021.

    Google Scholar 

  128. WHO (World Health Organization). Living guidance for clinical management of COVID-19. Geneva: WHO; 2021.

    Google Scholar 

  129. George PM, Barratt SL, Condliffe R, Desai SR, Devaraj A, Forrest I, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax. 2020;75(11):1009–16. https://doi.org/10.1136/thoraxjnl-2020-215314.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chudzik, M., Kapusta, J. (2022). Cardiovascular Complications of Long COVID-19: Prevalence, Diagnosis, and Risk Factors. In: Banach, M. (eds) Cardiovascular Complications of COVID-19. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-15478-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15478-2_23

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15477-5

  • Online ISBN: 978-3-031-15478-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics