Skip to main content

Thromboembolic Events in COVID-19

  • Chapter
  • First Online:
Cardiovascular Complications of COVID-19

Abstract

Hemostatic abnormalities, increased coagulation, and fibrinolysis impairment have been reported in COVID-19 infections, which increases the risk of blood clots and embolism. Thromboembolism in patients with COVID-19 most often manifests as venous thromboembolism (VTE), and less often by arterial thromboembolism (ATE). VTE diagnosis in COVID-19 infection can be difficult due to the overlapping symptoms of COVID-19 and VTE. D-dimer elevation is often observed in patients with COVID-19 infection. It translates into an unfavorable prognosis in patients with COVID-19 even if not accompanied by VTE. The sensitivity and specificity of D-dimer in the diagnosis of VTE decline in patients with COVID-19. Thromboprophylaxis is recommended in all patients hospitalized for COVID-19. The optimal dose of thromboprophylaxis is still being researched and discussed as regards specific clinical settings. The management of COVID-19-associated VTE is essentially no different than the usual treatment of VTE, except for preference for treatment regimens based on drugs known to induce fewer interactions with other agents used for COVID-19 and requiring less frequent therapy monitoring. COVID-19-associated VTE portends worse prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASA:

Acetylsalicylic acid

ATE:

Arterial thromboembolism

COVID-19:

Coronavirus disease 2019

CTPA:

CT pulmonary angiography

DVT:

Deep venous thrombosis

HFU:

Unfractionated heparin

ICU:

Intensive care unit

LMWH:

Low-molecular-weight heparin

PE:

Pulmonary embolism

VTE:

Venous thromboembolism

VUS:

Venous ultrasound

References

  1. Mondal S, Quintili AL, Karamchandani K, et al. Thromboembolic disease in COVID-19 patients: a brief narrative review. J Intensive Care. 2020;8:70. https://doi.org/10.1186/s40560-020-00483-y.

    Article  Google Scholar 

  2. Klok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–7. https://doi.org/10.1016/j.thromres.2020.04.013.

    Article  CAS  Google Scholar 

  3. Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18:1995–2002. https://doi.org/10.1111/jth.14888.

    Article  CAS  Google Scholar 

  4. Wichmann D, Sperhake JP, Lutgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173:268–77. https://doi.org/10.7326/M20-2003.

    Article  Google Scholar 

  5. Bosmuller H, Traxler S, Bitzer M, et al. The evolution of pulmonary pathology in fatal COVID-19 disease: an autopsy study with clinical correlation. Virchows Arch. 2020;477:349–57. https://doi.org/10.1007/s00428-020-02881-x.

    Article  CAS  Google Scholar 

  6. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. https://doi.org/10.1016/j.thromres.2020.04.024.

    Article  CAS  Google Scholar 

  7. Mackman N, Antoniak S, Wolberg AS, et al. Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arterioscler Thromb Vasc Biol. 2020;40:2033–44. https://doi.org/10.1161/ATVBAHA.120.314514.

    Article  CAS  Google Scholar 

  8. Porfidia A, Valeriani E, Pola R, et al. Venous thromboembolism in patients with COVID-19: systematic review and meta-analysis. Thromb Res. 2020;196:67–74. https://doi.org/10.1016/j.thromres.2020.08.020.

    Article  CAS  Google Scholar 

  9. Jimenez D, Garcia-Sanchez A, Rali P, et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Chest. 2021;159:1182–96. https://doi.org/10.1016/j.chest.2020.11.005.

    Article  CAS  Google Scholar 

  10. Yamashita Y, Maruyama Y, Satokawa H, et al. Incidence and clinical features of venous thromboembolism in hospitalized patients with coronavirus disease 2019 (COVID-19) in Japan. Circ J. 2021;85:2208–14. https://doi.org/10.1253/circj.CJ-21-0169.

    Article  CAS  Google Scholar 

  11. Loo J, Spittle DA, Newnham M. COVID-19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021;76:412–20. https://doi.org/10.1136/thoraxjnl-2020-216243.

    Article  Google Scholar 

  12. Obi AT, Tignanelli CJ, Jacobs BN, et al. Empirical systemic anticoagulation is associated with decreased venous thromboembolism in critically ill influenza A H1N1 acute respiratory distress syndrome patients. J Vasc Surg Venous Lymphat Disord. 2019;7:317–24. https://doi.org/10.1016/j.jvsv.2018.08.010.

    Article  Google Scholar 

  13. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127:104362. https://doi.org/10.1016/j.jcv.2020.104362.

    Article  CAS  Google Scholar 

  14. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46:1089–98. https://doi.org/10.1007/s00134-020-06062-x.

    Article  CAS  Google Scholar 

  15. Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20:1135–40. https://doi.org/10.1016/S1473-3099(20)30434-5.

    Article  CAS  Google Scholar 

  16. Iba T, Levy JH, Warkentin TE, et al. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17:1989–94. https://doi.org/10.1111/jth.14578.

    Article  CAS  Google Scholar 

  17. Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24:360. https://doi.org/10.1186/s13054-020-03077-0.

    Article  Google Scholar 

  18. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7:e575–82. https://doi.org/10.1016/S2352-3026(20)30216-7.

    Article  Google Scholar 

  19. Canzano P, Brambilla M, Porro B, et al. Platelet and endothelial activation as potential mechanisms behind the thrombotic complications of COVID-19 patients. JACC Basic Transl Sci. 2021;6:202–18. https://doi.org/10.1016/j.jacbts.2020.12.009.

    Article  Google Scholar 

  20. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63:364–74. https://doi.org/10.1007/s11427-020-1643-8.

    Article  CAS  Google Scholar 

  21. McCracken IR, Saginc G, He L, et al. Lack of evidence of angiotensin-converting enzyme 2 expression and replicative infection by SARS-CoV-2 in human endothelial cells. Circulation. 2021;143:865–8. https://doi.org/10.1161/CIRCULATIONAHA.120.052824.

    Article  CAS  Google Scholar 

  22. Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136:1317–29. https://doi.org/10.1182/blood.2020007214.

    Article  CAS  Google Scholar 

  23. Gupta N, Zhao YY, Evans CE. The stimulation of thrombosis by hypoxia. Thromb Res. 2019;181:77–83. https://doi.org/10.1016/j.thromres.2019.07.013.

    Article  CAS  Google Scholar 

  24. Fara A, Mitrev Z, Rosalia RA, et al. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol. 2020;10:200160. https://doi.org/10.1098/rsob.200160.

    Article  CAS  Google Scholar 

  25. Spyropoulos AC, Weitz JI. Hospitalized COVID-19 patients and venous thromboembolism: a perfect storm. Circulation. 2020;142:129–32. https://doi.org/10.1161/CIRCULATIONAHA.120.048020.

    Article  CAS  Google Scholar 

  26. Wang J, Jiang M, Chen X, et al. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108:17–41. https://doi.org/10.1002/JLB.3COVR0520-272R.

    Article  CAS  Google Scholar 

  27. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. https://doi.org/10.1016/j.trsl.2020.04.007.

    Article  CAS  Google Scholar 

  28. Violi F, Pignatelli P, Cammisotto V, et al. COVID-19 and thrombosis: clinical features, mechanism of disease, and therapeutic implications. Kardiol Pol. 2021;79:1197–205. https://doi.org/10.33963/KP.a2021.0154.

    Article  Google Scholar 

  29. Gill JC, Endres-Brooks J, Bauer PJ, et al. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood. 1987;69:1691–5.

    Article  CAS  Google Scholar 

  30. Gerard C, Maggipinto G, Minon JM. COVID-19 and ABO blood group: another viewpoint. Br J Haematol. 2020;190:e93–4. https://doi.org/10.1111/bjh.16884.

    Article  CAS  Google Scholar 

  31. Barbar S, Noventa F, Rossetto V, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010;8:2450–7. https://doi.org/10.1111/j.1538-7836.2010.04044.x.

    Article  CAS  Google Scholar 

  32. Cui LY, Cheng WW, Mou ZW, et al. Risk factors for pulmonary embolism in patients with COVID-19: a systemic review and meta-analysis. Int J Infect Dis. 2021;111:154–63. https://doi.org/10.1016/j.ijid.2021.08.017.

    Article  CAS  Google Scholar 

  33. Spyropoulos AC, Levy JH, Ageno W, et al. Scientific and Standardization Committee communication: clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18:1859–65. https://doi.org/10.1111/jth.14929.

    Article  CAS  Google Scholar 

  34. Zochios V, Parhar K, Tunnicliffe W, et al. The right ventricle in ARDS. Chest. 2017;152:181–93. https://doi.org/10.1016/j.chest.2017.02.019.

    Article  Google Scholar 

  35. Gorog DA, Storey RF, Gurbel PA, et al. Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat Rev Cardiol. 2022;19:475–95. https://doi.org/10.1038/s41569-021-00665-7.

    Article  CAS  Google Scholar 

  36. Berger JS, Kunichoff D, Adhikari S, et al. Prevalence and outcomes of D-dimer elevation in hospitalized patients with COVID-19. Arterioscler Thromb Vasc Biol. 2020;40:2539–47. https://doi.org/10.1161/ATVBAHA.120.314872.

    Article  CAS  Google Scholar 

  37. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20. https://doi.org/10.1056/NEJMoa2002032.

    Article  CAS  Google Scholar 

  38. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62. https://doi.org/10.1016/S0140-6736(20)30566-3.

    Article  CAS  Google Scholar 

  39. Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18:1324–9. https://doi.org/10.1111/jth.14859.

    Article  CAS  Google Scholar 

  40. Li Y, Deng Y, Ye L, et al. Clinical significance of plasma d-dimer in COVID-19 mortality. Front Med (Lausanne). 2021;8:638097. https://doi.org/10.3389/fmed.2021.638097.

    Article  Google Scholar 

  41. Kollias A, Kyriakoulis KG, Lagou S, et al. Venous thromboembolism in COVID-19: a systematic review and meta-analysis. Vasc Med. 2021;26:415–25. https://doi.org/10.1177/1358863X21995566.

    Article  CAS  Google Scholar 

  42. Mouhat B, Besutti M, Bouiller K, et al. Elevated D-dimers and lack of anticoagulation predict PE in severe COVID-19 patients. Eur Respir J. 2020;56:2001811. https://doi.org/10.1183/13993003.01811-2020.

    Article  CAS  Google Scholar 

  43. Choi JJ, Wehmeyer GT, Li HA, et al. D-dimer cut-off points and risk of venous thromboembolism in adult hospitalized patients with COVID-19. Thromb Res. 2020;196:318–21. https://doi.org/10.1016/j.thromres.2020.09.022.

    Article  CAS  Google Scholar 

  44. Kwee RM, Adams HJA, Kwee TC. Pulmonary embolism in patients with COVID-19 and value of D-dimer assessment: a meta-analysis. Eur Radiol. 2021;31:8168–86. https://doi.org/10.1007/s00330-021-08003-8.

    Article  CAS  Google Scholar 

  45. Lopes RD, de Barros ESPGM, Furtado RHM, et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated D-dimer concentration (ACTION): an open-label, multicentre, randomised, controlled trial. Lancet. 2021;397:2253–63. https://doi.org/10.1016/S0140-6736(21)01203-4.

    Article  CAS  Google Scholar 

  46. Audo A, Bonato V, Cavozza C, et al. Acute pulmonary embolism in SARS-CoV-2 infection treated with surgical embolectomy. Ann Thorac Surg. 2020;110:e403–4. https://doi.org/10.1016/j.athoracsur.2020.04.013.

    Article  Google Scholar 

  47. Nascimbene A, Basra SS, Dinh K, et al. Percutaneous thrombus removal in COVID-19-infected patient with pulmonary embolism. Methodist Debakey Cardiovasc J. 2021;17:e33–6. https://doi.org/10.14797/UUTH5836.

    Article  Google Scholar 

  48. Poissy J, Goutay J, Caplan M, et al. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence. Circulation. 2020;142:184–6. https://doi.org/10.1161/CIRCULATIONAHA.120.047430.

    Article  CAS  Google Scholar 

  49. Moores LK, Tritschler T, Brosnahan S, et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST guideline and expert panel report. Chest. 2020;158:1143–63. https://doi.org/10.1016/j.chest.2020.05.559.

    Article  CAS  Google Scholar 

  50. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:2950–73. https://doi.org/10.1016/j.jacc.2020.04.031.

    Article  CAS  Google Scholar 

  51. Cuker A, Tseng EK, Nieuwlaat R, et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Adv. 2021;5:872–88. https://doi.org/10.1182/bloodadvances.2020003763.

    Article  CAS  Google Scholar 

  52. Spyropoulos AC, Goldin M, Giannis D, et al. Efficacy and safety of therapeutic-dose heparin vs standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19: the HEP-COVID randomized clinical trial. JAMA Intern Med. 2021;181:1612–20. https://doi.org/10.1001/jamainternmed.2021.6203.

    Article  CAS  Google Scholar 

  53. REMAP-CAP Investigators, ACTIV-4a Investigators, ATTACC Investigators, et al. Therapeutic anticoagulation with heparin in noncritically ill patients with Covid-19. N Engl J Med. 2021;385:790–802. https://doi.org/10.1056/NEJMoa2105911.

    Article  Google Scholar 

  54. Sholzberg M, Tang GH, Rahhal H, et al. Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with covid-19 admitted to hospital: RAPID randomised clinical trial. BMJ. 2021;375:n2400. https://doi.org/10.1136/bmj.n2400.

    Article  Google Scholar 

  55. The REMAP-CAP, ACTIV-4a, ATTACC Investigators. Therapeutic anticoagulation with heparin in critically ill patients with Covid-19. N Engl J Med. 2021;385:777–89. https://doi.org/10.1056/NEJMoa2103417.

    Article  Google Scholar 

  56. Chow JH, Khanna AK, Kethireddy S, et al. Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and in-hospital mortality in hospitalized patients with coronavirus disease 2019. Anesth Analg. 2021;132:930–41. https://doi.org/10.1213/ANE.0000000000005292.

    Article  CAS  Google Scholar 

  57. RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2022;399:143–51. https://doi.org/10.1016/S0140-6736(21)01825-0.

    Article  Google Scholar 

  58. Ozsu S, Gunay E, Konstantinides SV. A review of venous thromboembolism in COVID-19: a clinical perspective. Clin Respir J. 2021;15:506–12. https://doi.org/10.1111/crj.13330.

    Article  CAS  Google Scholar 

  59. Ramacciotti E, Barile Agati L, Calderaro D, et al. Rivaroxaban versus no anticoagulation for post-discharge thromboprophylaxis after hospitalisation for COVID-19 (MICHELLE): an open-label, multicentre, randomised, controlled trial. Lancet. 2022;399:50–9. https://doi.org/10.1016/S0140-6736(21)02392-8.

    Article  CAS  Google Scholar 

  60. Spyropoulos AC, Anderson FA Jr, FitzGerald G, et al. Predictive and associative models to identify hospitalized medical patients at risk for VTE. Chest. 2011;140:706–14. https://doi.org/10.1378/chest.10-1944.

    Article  Google Scholar 

  61. Rosenberg D, Eichorn A, Alarcon M, et al. External validation of the risk assessment model of the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health system. J Am Heart Assoc. 2014;3:e001152. https://doi.org/10.1161/JAHA.114.001152.

    Article  Google Scholar 

  62. Mansory EM, Srigunapalan S, Lazo-Langner A. Venous thromboembolism in hospitalized critical and noncritical COVID-19 patients: a systematic review and meta-analysis. TH Open. 2021;5:e286–94. https://doi.org/10.1055/s-0041-1730967.

    Article  Google Scholar 

  63. Shah S, Shah K, Patel SB, et al. Elevated D-dimer levels are associated with increased risk of mortality in coronavirus disease 2019: a systematic review and meta-analysis. Cardiol Rev. 2020;28:295–302. https://doi.org/10.1097/CRD.0000000000000330.

    Article  Google Scholar 

  64. Sakka M, Connors JM, Hekimian G, et al. Association between D-dimer levels and mortality in patients with coronavirus disease 2019 (COVID-19): a systematic review and pooled analysis. J Med Vasc. 2020;45:268–74. https://doi.org/10.1016/j.jdmv.2020.05.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Pulmonary Hypertension Foundation supported editorial assistance of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kurzyna .

Editor information

Editors and Affiliations

Ethics declarations

Authors have nothing to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wieteska-Miłek, M., Kurzyna, M. (2022). Thromboembolic Events in COVID-19. In: Banach, M. (eds) Cardiovascular Complications of COVID-19. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-15478-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15478-2_12

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15477-5

  • Online ISBN: 978-3-031-15478-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics