Skip to main content

Nature of DSP-4-Induced Neurotoxicity

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 72 Accesses

Abstract

N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) is a noradrenergic neurotoxin which selectively damages noradrenergic projections originating from the locus coeruleus (LC) and transiently alters sympathetic neurons in the periphery. The neurotoxin produces chronic brain inflammation that is continuously observed in all brain regions innervated by LC. DSP-4 accumulates intraneuronally and produces nerve terminal degeneration. DSP-4 inhibits norepinephrine (NE) reuptake, stimulates NE release, and increases NE turnover rate. Systemic administration of DSP-4 has a rapid dose-dependent depleting effect on the endogenous NE level. The effect of DSP-4 is largely restricted to noradrenergic neurons; however, DSP-4 slightly reduces the level of 5-hydroxytryptamine and dopamine. The rat age at the time of DSP-4 injection is important in determining the nature of the long-term changes in the noradrenergic system. Thus, DSP-4 treatment of adult rats produces morphological changes of NE neurons with a pronounced decrease in NE levels in the cerebral cortex, hippocampus, spinal cord, and cerebellum. This process is not long-lasting, and after several months, a regeneration of NE nerve terminals is observed. DSP-4 injected to newborn rats induces an alteration of the postnatal development of noradrenergic system with a permanent NE denervation in brain areas distal to LC (cortex and hippocampus) and a hyperinnervation in regions proximal to LC (brainstem, cerebellum, and pons-medulla). This type of hyperinnervation does not exist after DSP-4 treatment of adult animals. The noradrenergic lesion obtained with DSP-4 is highly reproducible; therefore, DSP-4 may represent a suitable tool to discern LC neuron degeneration and recovery and to investigate the projections of non-coerulean NE neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HIAA:

5-hydroxyindoleacetic acid

5-HT:

serotonin

AD:

aldehyde dehydrogenase

AR:

aldehyde reductase

CNS:

central nervous system

COMT:

catechol-O-methyl transferase

DA:

dopamine

DAT:

dopamine transporter

DBH:

dopamine-β-hydroxylase

DHPG:

3,4-dihydroxyphenylethylene glycol

DOPAC:

3,4-dihydroxyphenylacetic acid

DSP-4:

N-(2-chloroethyl)-N-ethyl-2-bromo-benzylamine

GABA:

γ-aminobutyric acid

i.p.:

intraperitoneal injection

i.v.:

intravenous injection

LC:

locus coeruleus

MAO:

monoamine oxidase

MHPG:

3-methoxy-4-hydroxyphenylethylene glycol

NE:

norepinephrine

NET:

norepinephrine transporter

OCTs:

organic cation transporters

s.c.:

subcutaneous injection

SERT:

serotonin transporter

References

  • Af Bjerkén, S., Stenmark Persson, R., Barkander, A., Karalija, N., Pelegrina-Hidalgo, N., Gerhardt, G. A., Virel, A., & Strömberg, I. (2019). Noradrenaline is crucial for the substantia nigra dopaminergic cell maintenance. Neurochemistry International, 131, 104551.

    Article  Google Scholar 

  • Bertocci, B., Gill, G., & Da Prada, M. (1988). Prevention of the DSP-4-induced noradrenergic neurotoxicity by irreversible, not by reversible MAO-B inhibitors. Pharmacogical Research Communications, 20, 131–132.

    Article  Google Scholar 

  • Booze, R. M., Hall, J. A., Cress, N. M., Miller, G. D., & Davis, J. N. (1988). DSP-4 treatment produces abnormal tyrosine hydroxylase immunoreactive fibers in rat hippocampus. Experimental Neurology, 101, 75–86.

    Article  CAS  Google Scholar 

  • Bortel, A., Nowak, P., & Brus, R. (2008a). Neonatal DSP-4 treatment modifies GABAergic neurotransmission in the prefrontal cortex of adult rats. Neurotoxicity Research, 13, 247–252.

    Article  CAS  Google Scholar 

  • Bortel, A., Slomian, L., Nitka, D., Swierszcz, M., Jaksz, M., Adamus-Sitkiewicz, B., Nowak, P., Josko, J., Kostrzewa, R. M., & Brus, R. (2008b). Neonatal N-(−2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) treatment modifies the vulnerability to phenobarbital- and ethanol-evoked sedative-hypnotic effects in adult rats. Pharmacological Reports, 60, 331–338.

    CAS  Google Scholar 

  • Cassano, T., Gaetani, S., Morgese, M. G., Macheda, T., Laconca, L., Dipasquale, P., Taltavull, J., Shippenberg, T. S., Cuomo, V., & Gobbi, G. (2009). Monoaminergic changes in locus coeruleus and dorsal raphe nucleus following noradrenaline depletion. Neurochemical Research, 34, 1417–1426.

    Article  CAS  Google Scholar 

  • Chiodo, L. A., Acheson, A. L., Zigmond, M. J., & Stricker, E. M. (1983). Subtotal destruction of central noradrenergic projections increases the firing rate of locus coeruleus cells. Brain Research, 264, 123–126.

    Article  CAS  Google Scholar 

  • Costigan, M., Moss, A., Latremoliere, A., Johnston, C., Verma-Gandhu, M., Herbert, T. A., Barrett, L., Brenner, G. J., Vardeh, D., Woolf, C. J., & Fitzgerald, M. (2009). T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. The Journal of Neuroscience, 29, 14415.

    Article  CAS  Google Scholar 

  • Curtis, A. L., Bethea, T., & Valentino, R. J. (2006). Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacology, 31, 544–554.

    Article  CAS  Google Scholar 

  • Dabrowska, J., Nowak, P., & Brus, R. (2007). Desensitization of 5-HT(1A) autoreceptors induced by neonatal DSP-4 treatment. European Neuropsychopharmacology, 17, 129–137.

    Article  CAS  Google Scholar 

  • Dailly, E., Chenu, F., Petit-Demoulière, B., & Bourin, M. (2006). Specificity and efficacy of noradrenaline, serotonin depletion in discrete brain areas of Swiss mice by neurotoxins. Journal of Neuroscience Methods, 150, 111–115.

    Article  CAS  Google Scholar 

  • Delini-Stula, A., Mogilnicka, E., Hunn, C., & Dooley, D. J. (1984). Novelty-oriented behavior in the rat after selective damage of locus coeruleus projections by DSP-4, a new noradrenergic neurotoxin. Pharmacology Biochemistry and Behavior, 20, 613–618.

    Article  CAS  Google Scholar 

  • Dooley, D. J., Heal, D. J., & Goodwin, G. M. (1987). Repeated electroconvulsive shock prevents increased neocortical beta 1-adrenoceptor binding after DSP-4 treatment in rats. European Journal of Pharmacology, 134, 333–337.

    Article  CAS  Google Scholar 

  • Dudley, M. W., Howard, B. D., & Cho, A. K. (1990). The interaction of the beta-haloethyl benzylamines, xylamine, and DSP-4 with catecholaminergic neurons. Annual Review of Pharmacology and Toxicology, 30, 387–403.

    Article  CAS  Google Scholar 

  • Feinstein, D. L., Heneka, M. T., Gavrilyuk, V., Russo, C. D., Weinberg, G., & Galea, E. (2002). Noradrenergic regulation of inflammatory gene expression in brain. Neurochemistry International, 41, 357–365.

    Article  CAS  Google Scholar 

  • Finnegan, K. T., Skratt, J. J., Irwin, I., DeLanney, L. E., & Langston, J. W. (1990). Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO-B. European Journal of Pharmacology, 184, 119–126.

    Article  CAS  Google Scholar 

  • Finnell, J. E., Moffitt, C. M., Hesser, L. A., Harrington, E., Melson, M. N., Wood, C. S., & Wood, S. K. (2019). The contribution of the locus coeruleus-norepinephrine system in the emergence of defeat-induced inflammatory priming. Brain, Behavior, and Immunity, 79, 102–113.

    Article  CAS  Google Scholar 

  • Fornai, F., Bassi, L., Torracca, M. T., Alessandri, M. G., Scalori, V., & Corsini, G. U. (1996a). Region- and neurotransmitter-dependent species and strain differences in DSP-4-induced monoamine depletion in rodents. Neurodegeneration, 5, 241–249.

    Article  CAS  Google Scholar 

  • Fornai, F., Giorgi, F. S., Gesi, M., Chen, K., Alessandri, M. G., & Shih, J. C. (2001). Biochemical effects of the monoamine neurotoxins DSP-4 and MDMA in specific brain regions of MAO-B-deficient mice. Synapse, 39, 213–221.

    Article  CAS  Google Scholar 

  • Fornai, F., Torracca, M. T., Bassi, L., D’Errigo, D. A., Scalori, V., & Corsini, G. U. (1996b). Norepinephrine loss selectively enhances chronic nigrostriatal dopamine depletion in mice and rats. Brain Research, 735, 349–353.

    Article  CAS  Google Scholar 

  • Fritschy, J. M., Geffard, M., & Grzanna, R. (1990). The response of noradrenergic axons to systemically administered DSP-4 in the rat: An immunohistochemical study using antibodies to noradrenaline and dopamine-beta-hydroxylase. Journal of Chemical Neuroanatomy, 3, 309–321.

    CAS  Google Scholar 

  • Fritschy, J. M., & Grzanna, R. (1989). Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience, 30, 181–197.

    Article  CAS  Google Scholar 

  • Fritschy, J. M., & Grzanna, R. (1991a). Experimentally-induced neuron loss in the locus coeruleus of adult rats. Experimental Neurology, 111, 123–127.

    Article  CAS  Google Scholar 

  • Fritschy, J. M., & Grzanna, R. (1991b). Selective effects of DSP-4 on locus coeruleus axons: Are there pharmacologically different types of noradrenergic axons in the central nervous system? Progress in Brain Research, 88, 257–268.

    Article  CAS  Google Scholar 

  • Ghraf, R., Michel, M., Hiemke, C., & Knuppen, R. (1983). Competition by monophenolic estrogens and catecholestrogens for high-affinity uptake of [3H](−)-norepinephrine into synaptosomes from rat cerebral cortex and hypothalamus. Brain Research, 277, 163–168.

    Article  CAS  Google Scholar 

  • Gibson, C. J. (1987). Inhibition of MAO B, but not MAO A, blocks DSP-4 toxicity on central NE neurons. European Journal of Pharmacology, 141, 135–138.

    Article  CAS  Google Scholar 

  • Giorgi, F. S., Ferrucci, M., Lazzeri, G., Pizzanelli, C., Lenzi, P., Alessandri, M. G., Murri, L., & Fornai, F. (2003). A damage to locus coeruleus neurons converts sporadic seizures into self-sustaining limbic status epilepticus. European Journal of Neuroscience, 17, 2593–2601.

    Article  Google Scholar 

  • Giorgi, F. S., Mauceli, G., Blandini, F., Ruggieri, S., Paparelli, A., Murri, L., & Fornai, F. (2006). Locus coeruleus and neuronal plasticity in a model of focal limbic epilepsy. Epilepsia, 47, 21–25.

    Article  CAS  Google Scholar 

  • Grzanna, R., Berger, U., Fritschy, J. M., & Geffard, M. (1989). Acute action of DSP-4 on central norepinephrine axons: Biochemical and immunohistochemical evidence for differential effects. Journal of Histochemistry and Cytochemistry, 37, 1435–1442.

    Article  CAS  Google Scholar 

  • Guillamón, A., de Blas, M. R., & Segovia, S. (1988). Effects of sex steroids on the development of the locus coeruleus in the rat. Brain Research, 468, 306–310.

    Article  Google Scholar 

  • Häidkind, R., Kivastik, T., Eller, M., Kolts, I., Oreland, L., & Harro, J. (2002). Denervation of the locus coeruleus projections by treatment with the selective neurotoxin DSP-4 [N (2-chloroethyl)-N-ethyl-2-bromobenzylamine] reduces dopamine release potential in the nucleus accumbens shell in conscious rats. Neuroscience Letters, 332, 79–82.

    Article  Google Scholar 

  • Hallman, H., & Jonsson, G. (1984). Pharmacological modifications of the neurotoxic action of the noradrenaline neurotoxin DSP-4 on central noradrenaline neurons. European Journal of Pharmacology, 103, 269–278.

    Article  CAS  Google Scholar 

  • Hallman, H., Sundström, E., & Jonsson, G. (1984). Effects of the noradrenaline neurotoxin DSP-4 on monoamine neurons and their transmitter turnover in rat CNS. Journal of Neural Transmission, 60, 89–102.

    Article  CAS  Google Scholar 

  • Harrell, L. E., Parsons, D. S., & Kolasa, K. (2005). The effect of central cholinergic and noradrenergic denervation on hippocampal sympathetic ingrowth and apoptosis-like reactivity in the rat. Brain Research, 1033, 68–77.

    Article  CAS  Google Scholar 

  • Harro, J., Häidkind, R., Harro, M., Modiri, A. R., Gillberg, P. G., Pähkla, R., Matto, V., & Oreland, L. (1999). Chronic mild unpredictable stress after noradrenergic denervation: Attenuation of behavioural and biochemical effects of DSP-4 treatment. European Neuropsychopharmacology, 10, 5–16.

    Article  CAS  Google Scholar 

  • Harro, J., Oreland, L., Vasar, E., & Bradwejn, J. (1995). Impaired exploratory behaviour after DSP-4 treatment in rats: Implications for the increased anxiety after noradrenergic denervation. European Neuropsychopharmacology, 5, 447–455.

    Article  CAS  Google Scholar 

  • Hatip-Al-Khatib, I., Mishima, K., Iwasaki, K., & Fujiwara, M. (2001). Microdialysates of amines and metabolites from core nucleus accumbens of freely moving rats are altered by dizocilpine. Brain Research, 902, 108–118.

    Article  CAS  Google Scholar 

  • Heal, D. J., Butler, S. A., Prow, M. R., & Buckett, W. R. (1993). Quantification of presynaptic alpha 2- adrenoceptors in rat brain after short-term DSP-4 lesioning. European Journal of Pharmacology, 249, 37–41.

    Article  CAS  Google Scholar 

  • Heneka, M. T., Gavrilyuk, V., Landreth, G. E., O’Banion, M. K., Weinberg, G., & Feinstein, D. L. (2003). Noradrenergic depletion increases inflammatory responses in brain: Effects on IkappaB and HSP70 expression. Journal of Neurochemistry, 85, 387–398.

    Article  CAS  Google Scholar 

  • Hormigo, S., Gómez-Nieto, R., Castellano, O., Herrero-Turrión, M. J., López, D. E., & Horta-Júnior, J. A. C. (2015). The noradrenergic projection from the locus coeruleus to the cochlear root neurons in rats. Brain Structure and Function, 220, 1477–1496.

    Article  CAS  Google Scholar 

  • Hormigo, S., Gómez-Nieto, R., Sancho, C., Herrero-Turrión, J., Carro, J., López, D. E., & Horta-Júnior, J. (2017). Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons. Brain Structure and Function, 222, 3491–3508.

    Article  Google Scholar 

  • Hörtnagl, H., Potter, P. E., Kindel, G., & Hanin, I. (1989). Noradrenaline depletion protects cholinergic neurons in rat hippocampus against AF64A-induced damage. Journal of Neuroscience Methods, 27, 103–108.

    Article  Google Scholar 

  • Howard, B. D., Cho, A. K., Zhang, M. B., Koide, M., & Lin, S. (1990). Covalent labeling of the cocaine-sensitive catecholamine transporter. Journal of Neuroscience Research, 26, 149–158.

    Article  CAS  Google Scholar 

  • Howard, O., Carr, G. V., Hill, T. E., Valentino, R. J., & Lucki, I. (2008). Differential blockade of CRF-evoked behaviors by depletion of norepinephrine and serotonin in rats. Psychopharmacology, 199, 569–582.

    Article  CAS  Google Scholar 

  • Hughes, Z. A., & Stanford, S. C. (1998a). A partial noradrenergic lesion induced by DSP-4 increases extracellular noradrenaline concentration in rat frontal cortex: A microdialysis study in vivo. Psychopharmacology, 136, 299–303.

    Article  CAS  Google Scholar 

  • Hughes, Z. A., & Stanford, S. C. (1998b). Evidence from microdialysis and synaptosomal studies of rat cortex for noradrenaline uptake sites with different sensitivities to SSRIs. British Journal of Pharmacology, 124, 1141–1148.

    Article  CAS  Google Scholar 

  • Jackisch, R., Gansser, S., & Cassel, J. C. (2008). Noradrenergic denervation facilitates the release of acetylcholine and serotonin in the hippocampus: Towards a mechanism underlying upregulations described in MCI patients? Experimental Neurology, 213, 345–353.

    Article  CAS  Google Scholar 

  • Jaim-Etcheverry, G. (1998). 2-Chloroethylamines (DSP-4 and Xylamine). In R. M. Kostrzewa (Ed.), Highly selective neurotoxins: Basic and clinical applications (pp. 131–140). Humana Press.

    Chapter  Google Scholar 

  • Jaim-Etcheverry, G., & Zieher, L. M. (1980). DSP-4: A novel compound with neurotoxic effects on noradrenergic neurons of adult and developing rats. Brain Research, 188, 513–523.

    Article  CAS  Google Scholar 

  • Jiang, L., Chen, S. H., Chu, C. H., Wang, S. J., Oyarzabal, E., Wilson, B., Sanders, V., Xie, K., Wang, Q., & Hong, J. S. (2015). A novel role of microglial NADPH oxidase in mediating extra-synaptic function of norepinephrine in regulating brain immune homeostasis. Glia, 63, 1057–1072.

    Article  Google Scholar 

  • Jonsson, G. (1980). Chemical neurotoxins as denervation tools in neurobiology. Annual Review of Neuroscience, 3, 169–187.

    Article  CAS  Google Scholar 

  • Jonsson, G., Hallman, H., Ponzio, F., & Ross, S. (1981). DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) – A useful denervation tool for central and peripheral noradrenaline neurons. European Journal of Pharmacology, 72, 173–188.

    Article  CAS  Google Scholar 

  • Jonsson, G., Hallman, H., & Sundström, E. (1982). Effects of the noradrenaline neurotoxin DSP-4 on the postnatal development of central noradrenaline neurons in the rat. Neuroscience, 7, 2895–2907.

    Article  CAS  Google Scholar 

  • Kask, A., Harro, J., Tuomaine, P., Rägo, L., & Männistö, P. T. (1997). Overflow of noradrenaline and dopamine in frontal cortex after [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine] (DSP-4) treatment: In vivo microdialysis study in anaesthetized rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 355, 267–272.

    Article  CAS  Google Scholar 

  • Kaushal, R., Taylor, B. K., Jamal, A. B., Zhang, L., Ma, F., Donahue, R., & Westlund, K. N. (2016). GABA-A receptor activity in the noradrenergic locus coeruleus drives trigeminal neuropathic pain in the rat; contribution of NAα1 receptors in the medial prefrontal cortex. Neuroscience, 334, 148–159.

    Article  CAS  Google Scholar 

  • Kim, M. A., Lee, H. S., Lee, B. Y., & Waterhouse, B. D. (2004). Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Research, 1026, 56–67.

    Article  CAS  Google Scholar 

  • Kostrzewa, R. M., & Garey, R. E. (1977). Sprouting of noradrenergic terminals in rat cerebellum following neonatal treatment with 6-hydroxydopa. Brain Research, 124, 385–391.

    Article  CAS  Google Scholar 

  • Kur’yanova, E. V., Zhukova, Y. D., & Teplyi, D. L. (2017). Effect of noradrenergic neurotoxin DSP-4 and maprotiline on heart rate spectral components in stressed and resting rats. Bulletin of Experimental Biology and Medicine, 163, 302–306.

    Article  Google Scholar 

  • Landa, M. E., Rubio, M. C., & Jaim-Etcheverry, G. (1984). The neurotoxic compound N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) depletes endogenous nor-epinephrine and enhances release of [3H]norepinephrine from rat cortical slices. Journal of Pharmacology and Experimental Therapeutics, 231, 131–136.

    CAS  Google Scholar 

  • Lategan, A. J., Marien, M. R., & Colpaert, F. C. (1992). Suppression of nigrostriatal and mesolimbic dopamine release in vivo following noradrenaline depletion by DSP-4: A microdialysis study. Life Sciences, 50, 995–999.

    Article  CAS  Google Scholar 

  • Lee, C. M., Javitch, J. A., & Snyder, S. H. (1982). Characterization of [3H]desipramine binding associated with neuronal norepinephrine uptake sites in rat brain membranes. Journal of Neuroscience, 10, 1515–1525.

    Article  Google Scholar 

  • Lee, H. S., Kim, M. A., & Waterhouse, B. D. (2005). Retrograde double-labeling study of common afferent projections to the dorsal raphe and the nuclear core of the locus coeruleus in the rat. The Journal of Comparative Neurology, 481, 179–193.

    Article  Google Scholar 

  • Llorca-Torralba, M., Borges, G., Neto, F., Mico, J. A., & Berrocoso, E. (2016). Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience, 338, 93–113.

    Article  CAS  Google Scholar 

  • Logue, M. P., Growdon, J. H., Coviella, I. L., & Wurtman, R. J. (1985). Differential effects of DSP-4 administration on regional brain norepinephrine turnover in rats. Life Sciences, 37, 403–409.

    Article  CAS  Google Scholar 

  • Luque, J. M., de Blas, M. R., Segovia, S., & Guillamón, A. (1992). Sexual dimorphism of the dopamine-beta-hydroxylase-immunoreactive neurons in the rat locus ceruleus. Developmental Brain Research, 67, 211–215.

    Article  CAS  Google Scholar 

  • Lyles, G. A., & Callingham, B. A. (1981). The effect of DSP-4 on monoamine oxidase activities in tissues of the rat. Journal of Pharmacy and Pharmacology, 33, 632–638.

    Article  CAS  Google Scholar 

  • Martins, I., de Vries, M. G., Teixeira-Pinto, A., Fadel, J., Wilson, S. P., Westerink, B. H. C., & Tavares, I. (2013). Noradrenaline increases pain facilitation from the brain during inflammatory pain. Neuropharmacology, 71, 299–307.

    Article  CAS  Google Scholar 

  • Medina, J. H., & Novas, M. L. (1983). Parallel changes in brain flunitrazepam binding and density of noradrenergic innervation. European Journal of Pharmacology, 88, 377–382.

    Article  CAS  Google Scholar 

  • Mishra, P. K., Burger, R. L., Bettendorf, A. F., Browning, R. A., & Jobe, P. C. (1994). Role of norepinephrine in forebrain and brainstem seizures: Chemical lesioning of locus ceruleus with DSP-4. Experimental Neurology, 125, 58–64.

    Article  CAS  Google Scholar 

  • Nowak, P., Labus, Ł., Kostrzewa, R. M., & Brus, R. (2006). DSP-4 prevents dopamine receptor priming by quinpirole. Pharmacology Biochemistry and Behavior, 84, 3–7.

    Article  CAS  Google Scholar 

  • Ohno, M., Yamamoto, T., Kobayashi, M., & Watanabe, S. (1993). Impairment of working memory induced by scopolamine in rats with noradrenergic DSP-4 lesions. European Journal of Pharmacology, 238, 117–120.

    Article  CAS  Google Scholar 

  • Olpe, H. R., Laszlo, J., Dooley, D. J., Heid, T., & Steinmann, M. W. (1983). Decreased activity of locus coeruleus neurons in the rat after DSP-4 treatment. Neuroscience Letters, 40, 81–84.

    Article  CAS  Google Scholar 

  • Prieto, M., & Giralt, M. T. (2001). Effects of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on alpha2-adrenoceptors which regulate the synthesis and release of noradrenaline in the rat brain. Pharmacology and Toxicology, 88, 152–158.

    Article  CAS  Google Scholar 

  • Ransom, R. W., Kammerer, R. C., & Cho, A. K. (1982). Chemical transformations of xylamine (N-20-chloroethyl-N-ethyl-2-methylbenzylamine) in solution. Pharmacological activity of the species derived from this irreversible norepinephrine uptake inhibitor. Molecular Pharmacology, 21, 380–386.

    CAS  Google Scholar 

  • Ransom, R. W., Waggaman, L. A., & Cho, A. K. (1985). Interaction of xylamine with peripheral sympathetic neurons. Life Sciences, 37, 1177–1182.

    Article  CAS  Google Scholar 

  • Ross, S. B. (1976). Long-term effects of N-2-chloroethyl-N-ethyl-2-bromobenzylamine hydro-chloride on noradrenergic neurones in the rat brain and heart. British Journal of Pharmacology, 58, 521–527.

    Article  CAS  Google Scholar 

  • Sachs, C., & Jonsson, G. (1975). Effects of 6-hydroxydopamine on central noradrenaline neurons during ontogeny. Brain Research, 99, 277–291.

    Article  CAS  Google Scholar 

  • Schuerger, R. J., & Balaban, C. D. (1995). N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) has differential efficacy for causing central noradrenergic lesions in two different rat strains: Comparison between long-Evans and Sprague–Dawley rats. Journal of Neuroscience Methods, 58, 95–101.

    Article  CAS  Google Scholar 

  • Snyder, S. H., & Coyle, J. T. (1969). Regional differences in 3Hnorepinephrine and 3H-dopamine uptake into rat brain homogenates. Journal of Pharmacology and Experimental Therapeutics, 165, 78–86.

    CAS  Google Scholar 

  • Song, S., Wang, Q., Jiang, L., Oyarzabal, E., Riddick, N. V., Wilson, B., Moy, S. S., Shih, Y. I., & Hong, J. S. (2019). Noradrenergic dysfunction accelerates LPS-elicited inflammation-related ascending sequential neurodegeneration and deficits in non-motor/motor functions. Brain, Behavior, and Immunity, 81, 374–387.

    Article  CAS  Google Scholar 

  • Sontag, T. A., Hauser, J., Kaunzinger, I., Gerlach, M., Tucha, O., & Lange, K. W. (2008). Effects of the noradrenergic neurotoxin DSP-4 on spatial memory in the rat. Journal of Neural Transmission, 115, 299–303.

    Article  CAS  Google Scholar 

  • Suzdak, P. D., & Gianutsos, G. (1985). GABA-noradrenergic interaction: Evidence for differential sites of action for GABA-A and GABA-B receptors. Journal of Neural Transmission, 64, 163–172.

    Article  CAS  Google Scholar 

  • Szot, P., Miguelez, C., White, S. S., Franklin, A., Sikkema, C., Wilkinson, C. W., Ugedo, L., & Raskind, M. A. (2010). A comprehensive analysis of the effect of DSP-4 on the locus coeruleus noradrenergic system in the rat. Neuroscience, 166, 279–291.

    Article  CAS  Google Scholar 

  • Theron, C. N., de Villiers, A. S., & Taljaard, J. J. (1993). Effects of DSP-4 on monoamine and monoamine metabolite levels and on beta adrenoceptor binding kinetics in rat brain at different times after administration. Neurochemical Research, 18, 1321–1327.

    Article  CAS  Google Scholar 

  • Touchette, J. C., Little, J. W., Wilken, G. H., Salvemini, D., & Macarthur, H. (2018). The neurotoxin DSP-4 induces hyperalgesia in rats that is accompanied by spinal oxidative stress and cytokine production. Neuroscience, 376, 13–23.

    Article  CAS  Google Scholar 

  • Uribe-Mariño, A., Castiblanco-Urbina, M. A., Falconi-Sobrinho, L. L., dos Anjos-Garcia, T., de Oliveira, R. C., Mendes-Gomes, J., da Silva Soares, R., Jr., Matthiesen, M., Almada, R. C., de Oliveira, R., & Coimbra, N. C. (2019). The alpha- and beta-noradrenergic receptors blockade in the dorsal raphe nucleus impairs the panic-like response elaborated by medial hypothalamus neurons. Brain Research, 1725, 146468.

    Article  Google Scholar 

  • Vizi, E. S., & Kiss, J. P. (1998). Neurochemistry and pharmacology of the major hippocampal transmitter systems: Synaptic and nonsynaptic interactions. Hippocampus, 8, 566–607.

    Article  CAS  Google Scholar 

  • Weinshenker, D., Ferrucci, M., Busceti, C. L., Biagioni, F., Lazzeri, G., Liles, L. C., Lenzi, P., Pasquali, L., Murri, L., Paparelli, A., & Fornai, F. (2008). Genetic or pharmacological blockade of noradrenaline synthesis enhances the neurochemical, behavioral, and neurotoxic effects of methamphetamine. Journal of Neurochemistry, 105, 471–483.

    Article  CAS  Google Scholar 

  • Wenge, B., & Bönisch, H. (2009). Interference of the noradrenergic neurotoxin DSP-4 with neuronal and nonneuronal monoamine transporters. Naunyn-Schmiedeberg’s Archives of Pharmacology, 380, 523–529.

    Article  CAS  Google Scholar 

  • Wolfman, C., Abó, V., Calvo, D., Medina, J., Dajas, F., & Silveira, R. (1994). Recovery of central noradrenergic neurons one year after the administration of the neurotoxin DSP-4. Neurochemistry International, 25, 395–400.

    Article  CAS  Google Scholar 

  • Yu, P. H., Davis, B. A., Fang, J., & Boulton, A. A. (1994). Neuroprotective effects of some monoamine oxidase B inhibitors against DSP-4-induced noradrenaline depletion in the mouse hippocampus. Journal of Neurochemistry, 63, 1820–1828.

    Article  CAS  Google Scholar 

  • Zaczek, R., Fritschy, J. M., Culp, S., De Souza, E. B., & Grzanna, R. (1990). Differential effects of DSP-4 on noradrenaline axons in cerebral cortex and hypothalamus may reflect heterogeneity of noradrenaline uptake sites. Brain Research, 522, 308–314.

    Article  CAS  Google Scholar 

  • Zahniser, N. R., Weiner, G. R., Worth, T., Philpott, K., Yasuda, R. P., Jonsson, G., & Dunwiddie, T. V. (1986). DSP-4-induced noradrenergic lesions increase beta-adrenergic receptors and hippocampal electrophysiological responsiveness. Pharmacology Biochemistry and Behavior, 24, 1397–1402.

    Article  CAS  Google Scholar 

  • Zhang, X., Zuo, D. M., Davis, B. A., Boulton, A. A., & Yu, P. H. (1996). Immunohistochemical evidence of neuroprotection by R(2)-deprenyl and N-(2-hexyl)-N-methylpropargylamine on DSP-4-induced degeneration of rat brain noradrenergic axons and terminals. Journal of Neuroscience Research, 43, 482–489.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Bortel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bortel, A. (2022). Nature of DSP-4-Induced Neurotoxicity. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_75

Download citation

Publish with us

Policies and ethics