Skip to main content

Methylmercury Exposure and Developmental Neurotoxicity: New Insights from Neural Stem Cells

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Methylmercury (MeHg) is a widespread neurotoxic environmental contaminant. The developing nervous system is particularly vulnerable to MeHg toxicity that may have adverse consequences on neurodevelopment depending on the timing and level of exposure. In our daily lives, we can be exposed to MeHg via consumption of contaminated seafood, which is the major MeHg source for humans. While the deleterious effects of exposure to high levels of MeHg are well known and characterized, the consequences and the mechanisms behind the developmental neurotoxic effects induced by low-level exposure are still unclear. Neural stem cells (NSCs) have been proposed as a powerful model to identify the adverse effects on the complex process of nervous system development. This chapter gives an overview of in vitro studies performed in NSCs of different origin with special emphasis on the effects induced by MeHg levels considered to be environmentally relevant to human exposure. Altogether, the data show that MeHg exerts harmful effects at very low concentrations by dysregulating critical neurodevelopmental steps such as proliferation, differentiation, migration, and neurite outgrowth. The use of NSC-based models has made possible the identification of relevant signaling pathways and molecular alterations that point to novel mechanisms of MeHg toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aNSCs:

Adult neural stem cells

CpG:

Cytosine dinucleotide

GD:

Gestational day

GSH:

Glutathione

hiPSC:

Human-induced pluripotent stem cells

hNES:

Human neuroepithelial-like cells

MeHg:

Methylmercury

NSCs:

Neural stem cells

PND:

Postnatal day

ROS:

Reactive oxygen species

References

  • Ã…kesson, E., Piao, J. H., Samuelsson, E. B., Holmberg, L., Kjældgaard, A., Falci, S., Sundström, E., & Seiger, Ã…. (2007). Long-term culture and neuronal survival after intraspinal transplantation of human spinal cord-derived neurospheres. Physiology and Behavior, 92(1–2), 60–66. https://doi.org/10.1016/j.physbeh.2007.05.056

    Article  Google Scholar 

  • American Academy of Pediatrics. (2019). Eating Fish Advice July 2019. July 2019, 2020.

    Google Scholar 

  • Barciszewska, A.-M., Giel-Pietraszuk, M., Perrigue, P., & Naskret-Barciszewska, M. (2019). Oxidative DNA damage in gliomas. Cell, 8(1065), 1–14.

    Google Scholar 

  • Bose, R., Banerjee, S., & Dunbar, G. L. (2021). Modeling neurological disorders in 3D organoids using human-derived pluripotent stem cells. Frontiers in Cell and Developmental Biology | www.frontiersin.org, 1, 786. https://doi.org/10.3389/fcell.2021.640212.

  • Bose, R., Moors, M., Tofighi, R., Cascante, A., Hermanson, O., & Ceccatelli, S. (2010). Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations. Cell Death and Disease, 1(11), e92. https://doi.org/10.1038/cddis.2010.60

    Article  Google Scholar 

  • Bose, R., Onishchenko, N., Edoff, K., Janson Lang, A. M., & Ceccatelli, S. (2012). Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicological Sciences, 130(2), 383–390. https://doi.org/10.1093/toxsci/kfs257

    Article  Google Scholar 

  • Brannen, C. L., & Sugaya, K. (2000). In vitro differentiation of multipotent human neural progenitors in serum-free medium. Neuroreport, 11(5), 1123–1128. https://doi.org/10.1097/00001756-200004070-00042

    Article  Google Scholar 

  • Burke, K., Cheng, Y., Li, B., Petrov, A., Joshi, P., Berman, R. F., Reuhl, K. R., & DiCicco-Bloom, E. (2006). Methylmercury elicits rapid inhibition of cell proliferation in the developing brain and decreases cell cycle regulator, cyclin E. Neurotoxicology, 27(6), 970–981. https://doi.org/10.1016/j.neuro.2006.09.001

    Article  Google Scholar 

  • Buzanska, L., Sypecka, J., Nerini-Molteni, S., Compagnoni, A., Hogberg, H. T., Del Torchio, R., Domanska-Janik, K., Zimmer, J., & Coecke, S. (2009). A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system. Stem Cells, 27(10), 2591–2601. https://doi.org/10.1002/stem.179

    Article  Google Scholar 

  • Castoldi, A. F., Johansson, C., Onishchenko, N., Coccini, T., Roda, E., Vahter, M., Ceccatelli, S., & Manzo, L. (2008). Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regulatory Toxicology and Pharmacology, 51(2), 201–214. https://doi.org/10.1016/j.yrtph.2008.01.016

    Article  Google Scholar 

  • Castrén, E., Võikar, V., & Rantamäki, T. (2007). Role of neurotrophic factors in depression. Current Opinion in Pharmacology, 7(1), 18–21.

    Article  Google Scholar 

  • Ceccatelli, S., Bose, R., Edoff, K., Onishchenko, N., & Spulber, S. (2013). Long-lasting neurotoxic effects of exposure to methylmercury during development. Journal of Internal Medicine, 273(5), 490–497. https://doi.org/10.1111/joim.12045

    Article  Google Scholar 

  • Cediel Ulloa, A., Gliga, A., Love, T. M., Pineda, D., Mruzek, D. W., Watson, G. E., Davidson, P. W., Shamlaye, C. F., Strain, J. J., Myers, G. J., van Wijngaarden, E., Ruegg, J., & Broberg, K. (2021). Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study. Environment International, 147, 106321. https://doi.org/10.1016/j.envint.2020.106321

    Article  Google Scholar 

  • Chang, S. H., Lee, H. J., Kang, B., Yu, K. N., Minai-Tehrani, A., Lee, S., Kim, S. U., & Cho, M. H. (2013). Methylmercury induces caspase-dependent apoptosis and autophagy in human neural stem cells. Journal of Toxicological Sciences, 38(6), 823–831. https://doi.org/10.2131/jts.38.823

    Article  Google Scholar 

  • Culbreth, M., & Aschner, M. (2019). Methylmercury epigenetics. In Toxics (Vol. 7, Issue 4). MDPI AG. https://doi.org/10.3390/toxics7040056.

  • Edoff, K., Raciti, M., Moors, M., Sundström, E., & Ceccatelli, S. (2017). Gestational age and sex influence the susceptibility of human neural progenitor cells to low levels of MeHg. Neurotoxicity Research, 32(4), 683–693. https://doi.org/10.1007/s12640-017-9786-x

    Article  Google Scholar 

  • Fujimura, M., & Usuki, F. (2015). Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats. Toxicology and Applied Pharmacology, 288(1), 19–25. https://doi.org/10.1016/j.taap.2015.07.006

    Article  Google Scholar 

  • Go, S., Kurita, H., Hatano, M., Matsumoto, K., Nogawa, H., Fujimura, M., Inden, M., & Hozumi, I. (2021). DNA methyltransferase- and histone deacetylase-mediated epigenetic alterations induced by low-level methylmercury exposure disrupt neuronal development. Archives of Toxicology, 95(4), 1227–1239. https://doi.org/10.1007/s00204-021-02984-7

    Article  Google Scholar 

  • Grandjean, P., Satoh, H., Murata, K., & Eto, K. (2010). Adverse effects of methylmercury: Environmental health research implications. Environmental Health Perspectives, 118(8), 1137–1145.

    Article  Google Scholar 

  • Guillaumet-Adkins, A., Yañez, Y., Peris-Diaz, M. D., Calabria, I., Palanca-Ballester, C., & Sandoval, J. (2017). Epigenetics and oxidative stress in aging. In Oxidative medicine and cellular longevity (Vol. 2017). Hindawi Limited. https://doi.org/10.1155/2017/9175806

  • Guo, B. Q., Yan, C. H., Cai, S. Z., Yuan, X. B., & Shen, X. M. (2013). Low level prenatal exposure to methylmercury disrupts neuronal migration in the developing rat cerebral cortex. Toxicology, 304, 57–68. https://doi.org/10.1016/j.tox.2012.11.019

    Article  Google Scholar 

  • Harada, M. (1995). Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25(1), 1–24.

    Article  Google Scholar 

  • Hintelmann, H. (2010). Organomercurials. Their formation and pathways in the environment. In Metal ions in life sciences (Vol. 7, pp. 365–401). Met Ions Life Sci. https://doi.org/10.1515/9783110436600-016

    Chapter  Google Scholar 

  • Homem, C. C. F., Repic, M., & Knoblich, J. A. (2015). Proliferation control in neural stem and progenitor cells. Nature Reviews Neuroscience, 16(11), 647–659. Nature Publishing Group. https://doi.org/10.1038/nrn4021.

  • Johansson, C. B., Momma, S., Clarke, D. L., Risling, M., Lendahl, U., & Frisén, J. (1999). Identification of neural stem cells. Cell, 96, 25–34.

    Article  Google Scholar 

  • Johansson, C., Castoldi, A. F., Onishchenko, N., Manzo, L., Vahter, M., & Ceccatelli, S. (2007). Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotoxicity Research, 11(3–4), 241–260.

    Article  Google Scholar 

  • Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., & McKay, R. D. (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes & Development, 10(24), 3129–3140. https://doi.org/10.1101/gad.10.24.3129

    Article  Google Scholar 

  • Kang, S. J., Jeong, S. H., Kim, E. J., Park, Y. I., Park, S. W., Shin, H. S., Son, S. W., & Kang, H. G. (2014). Toxic effects of methylmercury, arsanilic acid and danofloxacin on the differentiation of mouse embryonic stem cells into neural cells. Journal of Veterinary Science, 15(1), 61–71. https://doi.org/10.4142/jvs.2014.15.1.61

    Article  Google Scholar 

  • Ke, T., Gonçalves, F. M., Gonçalves, C. L., dos Santos, A. A., Rocha, J. B. T., Farina, M., Skalny, A., Tsatsakis, A., Bowman, A. B., & Aschner, M. (2019). Post-translational modifications in MeHg-induced neurotoxicity. Biochimica et Biophysica Acta – Molecular Basis of Disease, 1865(8), 2068–2081. Elsevier B.V. https://doi.org/10.1016/j.bbadis.2018.10.024.

  • Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J., & Brüstle, O. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3225–3230. https://doi.org/10.1073/pnas.0808387106

    Article  Google Scholar 

  • Lapham, L. W., Cernichiari, E., Cox, C., Myers, G. J., Baggs, R. B., Brewer, R., Shamlaye, C. F., Davidson, P. W., & Clarkson, T. W. (1995). An analysis of autopsy brain tissue from infants prenatally exposed to methymercury. Neurotoxicology, 16(4), 689–704.

    Google Scholar 

  • Moors, M., Cline, J. E., Abel, J., & Fritsche, E. (2007). ERK-dependent and -independent pathways trigger human neural progenitor cell migration. Toxicology and Applied Pharmacology, 221(1), 57–67. https://doi.org/10.1016/j.taap.2007.02.018

    Article  Google Scholar 

  • Moors, M., Rockel, T. D., Abel, J., Cline, J. E., Gassmann, K., Schreiber, T., Shuwald, J., Weinmann, N., Fritsche, E., Schuwald, J., Weinmann, N., & Fritsche, E. (2009). Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environmental Health Perspectives, 117(7), 1131–1138. https://doi.org/10.1289/ehp.0800207

    Article  Google Scholar 

  • Mori, N., Yasutake, A., & Hirayama, K. (2007). Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Archives of Toxicology, 81, 769–776. https://doi.org/10.1007/s00204-007-0209-2

    Article  Google Scholar 

  • Onishchenko, N., Karpova, N., Sabri, F., Castrén, E., Ceccatelli, S., Castren, E., & Ceccatelli, S. (2008). Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. Journal of Neurochemistry, 106(3), 1378–1387. https://doi.org/10.1111/j.1471-4159.2008.05484.x

    Article  Google Scholar 

  • Onishchenko, N., Tamm, C., Vahter, M., Hökfelt, T., Johnson, J. A., Johnson, D. A., & Ceccatelli, S. (2007). Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice. Toxicological Sciences, 97(2), 428–437.

    Article  Google Scholar 

  • Piper, D. R., Mujtaba, T., Rao, M. S., & Lucero, M. T. (2000). Immunocytochemical and physiological characterization of a population of cultured human neural precursors. Journal of Neurophysiology, 84(1), 534–548. https://doi.org/10.1152/jn.2000.84.1.534

    Article  Google Scholar 

  • Raciti, M., Salma, J., Spulber, S., Gaudenzi, G., Khalajzeyqami, Z., Conti, M., Anderlid, B. M. B.-M., Falk, A., Hermanson, O., & Ceccatelli, S. (2019). NRXN1 deletion and exposure to methylmercury increase astrocyte differentiation by different notch-dependent transcriptional mechanisms. Frontiers in Genetics, 10, 1–15. https://doi.org/10.3389/fgene.2019.00593

    Article  Google Scholar 

  • Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A., & Cepko, C. L. (1992). Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell, 68(1), 33–51. https://doi.org/10.1016/0092-8674(92)90204-P

    Article  Google Scholar 

  • So, A.-Y., Jung, J.-W., Lee, S., Kim, H.-S., & Kang, K.-S. (2011). DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One, 6(5), e19503.

    Article  Google Scholar 

  • Stern, A. H., & Smith, A. E. (2003). An assessment of the cord blood: Maternal blood methylmercury ratio: Implications for risk assessment. Environmental Health Perspectives, 111(12), 1465–1470.

    Article  Google Scholar 

  • Stummann, T. C., Hareng, L., & Bremer, S. (2007). Embryotoxicity hazard assessment of methylmercury and chromium using embryonic stem cells. Toxicology, 242(1–3), 130–143. https://doi.org/10.1016/j.tox.2007.09.022

    Article  Google Scholar 

  • Stummann, T. C., Hareng, L., & Bremer, S. (2009). Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology, 257(3), 117–126. https://doi.org/10.1016/j.tox.2008.12.018

    Article  Google Scholar 

  • Tamm, C., & Ceccatelli, S. (2017). Mechanistic insight into neurotoxicity induced by developmental insults. In Biochemical and biophysical research communications (Vol. 482, Issue 3, pp. 408–418). Elsevier B.V. https://doi.org/10.1016/j.bbrc.2016.10.087.

  • Tamm, C., Duckworth, J., Hermanson, O., & Ceccatelli, S. (2006). High susceptibility of neural stem cells to methylmercury toxicity: Effects on cell survival and neuronal differentiation. Journal of Neurochemistry, 97(1), 69–78.

    Article  Google Scholar 

  • Tamm, C., Duckworth, J. K., Hermanson, O., & Ceccatelli, S. (2008). Methylmercury inhibits differentiation of rat neural stem cells via Notch signalling. Neuroreport, 19(3), 339–343. https://doi.org/10.1097/WNR.0b013e3282f50ca4

    Article  Google Scholar 

  • Theunissen, P. T., Pennings, J. L. A., Robinson, J. F., Claessen, S. M. H., Kleinjans, J. C. S., & Piersma, A. H. (2011). Time-response evaluation by transcriptomics of methylmercury effects on neural differentiation of murine embryonic stem cells. Toxicological Sciences, 122(2), 437–447. https://doi.org/10.1093/toxsci/kfr134

    Article  Google Scholar 

  • Theunissen, P. T., Schulpen, S. H. W., van Dartel, D. A. M., Hermsen, S. A. B., van Schooten, F. J., & Piersma, A. H. (2010). An abbreviated protocol for multilineage neural differentiation of murine embryonic stem cells and its perturbation by methyl mercury. Reproductive Toxicology, 29(4), 383–392.

    Article  Google Scholar 

  • Tian, J. Y., Chen, W. W., Cui, J., Wang, H., Chao, C., Lu, Z. Y., & Bi, Y. Y. (2016). Effect of Lycium bararum polysaccharides on methylmercury-induced abnormal differentiation of hippocampal stem cells. Experimental and Therapeutic Medicine, 12(2), 683–689. https://doi.org/10.3892/etm.2016.3415

    Article  Google Scholar 

  • Ursinyova, M., Masanova, V., Uhnakova, I., Murinova, L. P., Patayova, H., Rausova, K., Trnovec, T., Stencl, J., & Gajdos, M. (2019). Prenatal and early postnatal exposure to total mercury and methylmercury from low maternal fish consumption. Biological Trace Element Research, 191(1), 16–26. https://doi.org/10.1007/s12011-018-1585-6

    Article  Google Scholar 

  • Wang, X., Yan, M., Zhao, L., Wu, Q., Wu, C., Chang, X., & Zhou, Z. (2016a). Low-dose methylmercury-induced apoptosis and mitochondrial DNA mutation in human embryonic neural progenitor cells. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2016/5137042

  • Wang, X., Yan, M., Zhao, L., Wu, Q., Wu, C. H., Chang, X., & Zhou, Z. (2016b). Low-dose methylmercury-induced genes regulate mitochondrial biogenesis via miR-25 in immortalized human embryonic neural progenitor cells. International Journal of Molecular Sciences, 17(12). https://doi.org/10.3390/ijms17122058

  • Watanabe, J., Nakamachi, T., Ogawa, T., Naganuma, A., Nakamura, M., Shioda, S., & Nakajo, S. (2009). Characterization of antioxidant protection of cultured neural progenitor cells (NPC) against methylmercury (MeHg) toxicity. Journal of Toxicological Sciences, 34(3), 315–325. https://doi.org/10.2131/jts.34.315

    Article  Google Scholar 

  • Watanabe, J., Nakamachi, T., Ohtaki, H., Naganuma, A., Shioda, S., & Nakajo, S. (2013). Low dose of methylmercury (MeHg) exposure induces caspase mediated-apoptosis in cultured neural progenitor cells. Journal of Toxicological Sciences, 38(6), 931–935. https://doi.org/10.2131/jts.38.931

    Article  Google Scholar 

  • Xu, M., Yan, C., Tian, Y., Yuan, X., & Shen, X. (2010). Effects of low level of methylmercury on proliferation of cortical progenitor cells. Brain Research, 1359, 272–280. https://doi.org/10.1016/j.brainres.2010.08.069

    Article  Google Scholar 

  • Yuan, X., Wang, J., & Chan, H. M. (2018). Sub-nanomolar methylmercury exposure promotes premature differentiation of murine embryonic neural precursor at the expense of their proliferation. Toxics, 6(4). https://doi.org/10.3390/toxics6040061

  • Zimmer, B., Lee, G., Balmer, N. V., Meganathan, K., Sachinidis, A., Studer, L., & Leist, M. (2012). Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. Environmental Health Perspectives, 120(8), 1116–1122. https://doi.org/10.1289/ehp.1104489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bose, R., Spulber, S., Ceccatelli, S. (2022). Methylmercury Exposure and Developmental Neurotoxicity: New Insights from Neural Stem Cells. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_235

Download citation

Publish with us

Policies and ethics