Skip to main content

Glutamate and Neurodegeneration in the Retina

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 56 Accesses

Abstract

L-glutamate is a neurotransmitter throughout the various levels of retinal neurones (photoreceptors, bipolar cells, ganglion cells) and acts at a range of ionotropic (iGlu) and metabotropic glutamate (mGlu) receptors to exert its physiological roles. A function unique to the retina can be ascribed to mGlu6 receptors, which are expressed only by ON bipolar cells at the sign-inverting synapse formed by photoreceptors. More conventional excitatory sign-conserving synapses utilizing iGlu receptors are formed at other locations in the retina. Overactivation of iGlu receptors (and especially NMDA receptors) is known to lead to excitotoxicity in the retina, as in other areas of the nervous system, and this may be associated with excessive neuronal Ca2+ influx. This excitotoxicity can be prevented or countered by iGlu receptor antagonists, both in vitro and in vivo. Furthermore, in some experimental models of retinal neurodegeneration (e.g., for glaucoma, ischemia, retinitis pigmentosa), a number of different types of iGluR antagonists have been shown to be effective in preclinical studies in a variety of species. In particular, the uncompetitive NMDA antagonist memantine has shown promise in experimental studies, but clinical trials to treat glaucoma with this drug have not had a successful outcome, possibly due to the unavailability of suitable markers of disease progression and heterogeneity of the disease in humans. It is thus important that further work is carried out so as to translate preclinical findings on neurodegeneration into successful clinical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

(S)-α-Amino-3-hydroxy-5-methyl-4-iso­xazolepropionic acid

L-AP4 (APB):

L-2-amino-4-phosphonobutyric acid

EAAT:

Excitatory amino acid transporter

mGlu:

Metabotropic glutamate

NMDA:

N-methyl-D-aspartate

RGC:

Retinal ganglion cell

References

  • Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & Collaborators, C. (2019). The concise guide to pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(S1), S397–S493.

    Google Scholar 

  • Almasieh, M., Wilson, A. M., Morquette, B., Cueva Vargas, J. L., & Di Polo, A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Progress in Retinal and Eye Research, 31(2), 152–181.

    Article  Google Scholar 

  • Baltmr, A., Duggan, J., Nizari, S., Salt, T. E., & Cordeiro, M. F. (2010). Neuroprotection in glaucoma – Is there a future role? Experimental Eye Research, 91(5), 554–566.

    Article  Google Scholar 

  • Beart, P. M., & O’Shea, R. D. (2007). Transporters for L-glutamate: An update on their molecular pharmacology and pathological involvement. British Journal of Pharmacology, 150(1), 5–17.

    Article  Google Scholar 

  • Beraudi, A., Bruno, V., Battaglia, G., Biagioni, F., Rampello, L., Nicoletti, F., & Poli, A. (2007). Pharmacological activation of mGlu2/3 metabotropic glutamate receptors protects retinal neurons against anoxic damage in the goldfish Carassius auratus. Experimental Eye Research, 84(3), 544–552.

    Article  Google Scholar 

  • Bond, A., O’Neill, M. J., Hicks, C. A., Monn, J. A., & Lodge, D. (1998). Neuroprotective effects of a systemically active group II metabotropic glutamate receptor agonist LY354740 in a gerbil model of global ischaemia. NeuroReport, 9(6), 1191–1193.

    Article  Google Scholar 

  • Bringmann, A., Pannicke, T., Biedermann, B., Francke, M., Iandiev, I., Grosche, J., Wiedemann, P., Albrecht, J., & Reichenbach, A. (2009). Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochemistry International, 54(3–4), 143–160.

    Article  Google Scholar 

  • Brooks, D. E., Garcia, G. A., Dreyer, E. B., Zurakowski, D., & Franco-Bourland, R. E. (1997). Vitreous body glutamate concentration in dogs with glaucoma. American Journal of Veterinary Research, 58(8), 864–867.

    Google Scholar 

  • Bruno, V., Battaglia, G., Copani, A., D’Onofrio, M., Di Iorio, P., De Blasi, A., Melchiorri, D., Flor, P. J., & Nicoletti, F. (2001). Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. Journal of Cerebral Blood Flow and Metabolism, 21(9), 1013–1033.

    Article  Google Scholar 

  • Calvo, E., Milla-Navarro, S., Ortuño-Lizarán, I., Gómez-Vicente, V., Cuenca, N., De la Villa, P., & Germain, F. (2020). Deleterious effect of NMDA plus kainate on the inner retinal cells and ganglion cell projection of the mouse. International Journal of Molecular Sciences, 21(5).

    Google Scholar 

  • Carter-Dawson, L., Crawford, M. L., Harwerth, R. S., Smith, E. L., 3rd, Feldman, R., Shen, F. F., Mitchell, C. K., & Whitetree, A. (2002). Vitreal glutamate concentration in monkeys with experimental glaucoma. Investigative Ophthalmology & Visual Science, 43(8), 2633–2637.

    Google Scholar 

  • Casson, R. J. (2006). Possible role of excitotoxicity in the pathogenesis of glaucoma. Clinical & Experimental Ophthalmology, 34(1), 54–63.

    Article  Google Scholar 

  • Chaudhary, P., Ahmed, F., & Sharma, S. C. (1998). MK801-a neuroprotectant in rat hypertensive eyes. Brain Research, 792(1), 154–158.

    Article  Google Scholar 

  • Choi, D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron, 1, 623–634.

    Article  Google Scholar 

  • Choi, D. W. (2020). Excitotoxicity: Still hammering the ischemic brain in 2020. Frontiers in Neuroscience, 14, 1104.

    Article  Google Scholar 

  • Christensen, I., Lu, B., Yang, N., Huang, K., Wang, P., & Tian, N. (2019). The susceptibility of retinal ganglion cells to glutamatergic excitotoxicity is type-specific. Frontiers in Neuroscience, 13(219).

    Google Scholar 

  • Cordeiro, M. F., Guo, L., Coxon, K. M., Duggan, J., Nizari, S., Normando, E. M., Sensi, S. L., Sillito, A. M., Fitzke, F. W., Salt, T. E., & Moss, S. E. (2010). Imaging multiple phases of neurodegeneration:A novel approach to assessing cell death in vivo. Cell Death and Disease, 1(1), e3.

    Article  Google Scholar 

  • Curtis, D. R., & Watkins, J. C. (1963). Acidic amino acids with strong excitatory actions on mammalian neurones. Journal of Physiology, 166, 1–14.

    Article  Google Scholar 

  • Doumazane, E., Scholler, P., Zwier, J. M., Trinquet, E., Rondard, P., & Pin, J.-P. (2011). A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. The FASEB Journal, 25(1), 66–77.

    Article  Google Scholar 

  • Dreyer, E. B., Zurakowski, D., Schumer, R. A., Podos, S. M., & Lipton, S. A. (1996). Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Archives of Ophthalmology, 114(3), 299–305.

    Article  Google Scholar 

  • Dryja, T. P., McGee, T. L., Berson, E. L., Fishman, G. A., Sandberg, M. A., Alexander, K. R., Derlacki, D. J., & Rajagopalan, A. S. (2005). Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proceedings of the National Academy of Sciences of the United States of America, 102(13), 4884–4889.

    Article  Google Scholar 

  • Dyka, F. M., May, C. A., & Enz, R. (2004). Metabotropic glutamate receptors are differentially regulated under elevated intraocular pressure. Journal of Neurochemistry, 90(1), 190–202.

    Article  Google Scholar 

  • Fletcher, E. L., Hack, I., Brandstatter, J. H., & Wassle, H. (2000). Synaptic localization of NMDA receptor subunits in the rat retina. Journal of Comparative Neurology, 420(1), 98–112.

    Article  Google Scholar 

  • Furuya, T., Pan, Z., & Kashiwagi, K. (2012). Role of retinal glial cell glutamate transporters in retinal ganglion cell survival following stimulation of NMDA receptor. Current Eye Research, 37(3), 170–178.

    Article  Google Scholar 

  • Fyk-Kolodziej, B., Qin, P., Dzhagaryan, A., & Pourcho, R. G. (2004). Differential cellular and subcellular distribution of glutamate transporters in the cat retina. Visual Neuroscience, 21(4), 551–565.

    Article  Google Scholar 

  • Gayet-Primo, J., & Puthussery, T. (2015). Alterations in kainate receptor and TRPM1 localization in bipolar cells after retinal photoreceptor degeneration. Frontiers in Cellular Neuroscience, 9, 486.

    Article  Google Scholar 

  • Greenfield, D. S., Girkin, C., & Kwon, Y. H. (2005). Memantine and progressive glaucoma. Journal of Glaucoma, 14(1), 84–86.

    Article  Google Scholar 

  • Gregory, K. J., & Goudet, C. (2021). International union of basic and clinical pharmacology. CXI. Pharmacology, signaling, and physiology of metabotropic glutamate receptors. Pharmacological Reviews, 73(1), 521.

    Article  Google Scholar 

  • Guo, L., Salt, T. E., Maass, A., Luong, V., Moss, S. E., Fitzke, F. W., & Cordeiro, M. F. (2006). Assessment of neuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cell apoptosis in vivo. Investigative Ophthalmology & Visual Science, 47(2), 626–633.

    Article  Google Scholar 

  • Gustafson, E. C., Stevens, E. R., Wolosker, H., & Miller, R. F. (2007). Endogenous D-serine contributes to NMDA-receptor-mediated light-evoked responses in the vertebrate retina. Journal of Neurophysiology, 98(1), 122–130.

    Article  Google Scholar 

  • Had-Aissouni, L. (2012). Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: Maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids, 42(1), 181–197.

    Article  Google Scholar 

  • Harada, T., Harada, C., Nakamura, K., Quah, H.-M. A., Okumura, A., Namekata, K., Saeki, T., Aihara, M., Yoshida, H., Mitani, A., & Tanaka, K. (2007). The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. The Journal of Clinical Investigation, 117(7), 1763–1770.

    Article  Google Scholar 

  • Hare, W. A., WoldeMussie, E., Lai, R. K., Ton, H., Ruiz, G., Chun, T., & Wheeler, L. (2004). Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: Functional measures. Investigative Ophthalmology & Visual Science, 45(8), 2625–2639.

    Article  Google Scholar 

  • Hartong, D. T., Berson, E. L., & Dryja, T. P. (2006). Retinitis pigmentosa. The Lancet, 368(9549), 1795–1809.

    Article  Google Scholar 

  • Hartveit, E., Brandstatter, J. H., Enz, R., & Wässle, H. (1995). Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue sections and isolated cells. European Journal of Neuroscience, 7(7), 1472–1483.

    Article  Google Scholar 

  • Hellyer, S., Leach, K., & Gregory, K. J. (2017). Neurobiological insights and novel therapeutic opportunities for CNS disorders from mGlu receptor allosteric and biased modulation. Current Opinion in Pharmacology, 32, 49–55.

    Article  Google Scholar 

  • Honda, S., Namekata, K., Kimura, A., Guo, X., Harada, C., Murakami, A., Matsuda, A., & Harada, T. (2019). Survival of alpha and intrinsically photosensitive retinal ganglion cells in NMDA-induced neurotoxicity and a mouse model of normal tension glaucoma. Investigative Ophthalmology & Visual Science, 60(12), 3696–3707.

    Article  Google Scholar 

  • Jensen, R. (2017). Effects of GABACR and mGluR1 antagonists on contrast response functions of Sprague-Dawley and P23H rat retinal ganglion cells. PLoS One, 12(12), e0189980.

    Article  Google Scholar 

  • Kalbaugh, T. L., Zhang, J., & Diamond, J. S. (2009). Coagonist release modulates NMDA receptor subtype contributions at synaptic inputs to retinal ganglion cells. The Journal of Neuroscience, 29(5), 1469–1479.

    Article  Google Scholar 

  • Kapin, M. A., Doshi, R., Scatton, B., DeSantis, L. M., & Chandler, M. L. (1999). Neuroprotective effects of eliprodil in retinal excitotoxicity and ischemia. Investigative Ophthalmology and Visual Science, 40(6), 1177–1182.

    Google Scholar 

  • Kim, D. Y., Kim, S. H., Choi, H. B., Min, C.-k., & Gwag, B. J. (2001). High abundance of GluR1 mRNA and reduced Q/R editing of GluR2 mRNA in individual NADPH-diaphorase neurons. Molecular and Cellular Neuroscience, 17(6), 1025–1033.

    Article  Google Scholar 

  • Kim, T. W., Kim, D. M., Park, K. H., & Kim, H. (2002). Neuroprotective effect of memantine in a rabbit model of optic nerve ischemia. Korean Journal of Ophthalmology : KJO, 16(1), 1–7.

    Article  Google Scholar 

  • Kobayashi, K. (1967). Studies on ERG, EOG and histological findings of the rabbit retinae treated with sodium L-glutamate. Nihon Ganka Gakkai Zasshi, 71(9), 1458–1465.

    Google Scholar 

  • Koulen, P., & Brandstatter, J. H. (2002). Pre- and postsynaptic sites of action of mGluR8a in the mammalian retina. Investigative Ophthalmology & Visual Science, 43(6), 1933–1940.

    Google Scholar 

  • Koulen, P., Kuhn, R., Wassle, H., & Brandstatter, J. H. (1997). Group I metabotropic glutamate receptors Mglur1 Alpha and Mglur5a: Localization in both synaptic layers of the rat retina. Journal of Neuroscience, 17(6), 2200–2211.

    Article  Google Scholar 

  • Koulen, P., Malitschek, B., Kuhn, R., Wassle, H., & Brandstatter, J. H. (1996). Group II and Group III metabotropic glutamate receptors in the rat retina: Distributions and developmental expression patterns. European Journal of Neuroscience, 8(10), 2177–2187.

    Article  Google Scholar 

  • Kugler, P., & Beyer, A. (2003). Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochemistry and Cell Biology, 120(3), 199–212.

    Article  Google Scholar 

  • Kwon, Y. H., Rickman, D. W., Baruah, S., Zimmerman, M. B., Kim, C. S., Boldt, H. C., Russell, S. R., & Hayreh, S. S. (2005). Vitreous and retinal amino acid concentrations in experimental central retinal artery occlusion in the primate. Eye, 19(4), 455–463.

    Article  Google Scholar 

  • Lebrun-Julien, F., Duplan, L., Pernet, V., Osswald, I., Sapieha, P., Bourgeois, P., Dickson, K., Bowie, D., Barker, P. A., & Di Polo, A. (2009). Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. The Journal of Neuroscience, 29(17), 5536–5545.

    Article  Google Scholar 

  • Lee, A., Anderson, A. R., Barnett, N. L., Stevens, M. G., & Pow, D. V. (2012). Alternate splicing and expression of the glutamate transporter EAAT5 in the rat retina. Gene, 506(2), 283–288.

    Article  Google Scholar 

  • Li, Q., Jin, R., Zhang, S., Sun, X., & Wu, J. (2020). Group II metabotropic glutamate receptor agonist promotes retinal ganglion cell survival by reducing neuronal excitotoxicity in a rat chronic ocular hypertension model. Neuropharmacology, 170, 108016.

    Article  Google Scholar 

  • Lipton, S. A. (2004). Paradigm shift in NMDA receptor antagonist drug development: Molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. Journal of Alzheimer’s Disease, 6(6 Suppl), S61–S74.

    Google Scholar 

  • Lodge, D. (2009). The history of the pharmacology and cloning of ionotropic glutamate receptors and the development of idiosyncratic nomenclature. Neuropharmacology, 56(1), 6–21.

    Article  Google Scholar 

  • Lucas, D. R., & Newhouse, J. P. (1957). The toxic effect of sodium L-glutamate on the inner layers of the retina. A.M.A. Archives of Ophthalmology, 58(2), 193–201.

    Article  Google Scholar 

  • Lukasiewicz, P. D. (2009). Retinal pharmacology: Inner retinal layers. In Encyclopedia of neuroscience. R. S. Editor-in-Chief: Larry. (pp. 255–261). Academic Press.

    Chapter  Google Scholar 

  • Luo, T., Wu, W. H., & Chen, B. S. (2011). NMDA receptor signaling: Death or survival? Frontiers of Biology, 6(6), 468–476.

    Article  Google Scholar 

  • Margolis, D. J., & Detwiler, P. B. (2011). Cellular origin of spontaneous ganglion cell spike activity in animal models of retinitis pigmentosa. Journal of Ophthalmology, 2011, 507037.

    Article  Google Scholar 

  • Meldrum, B. S. (2000). Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. Journal of Nutrition, 130(4S Suppl), 1007S–1015S.

    Article  Google Scholar 

  • Moreno Delgado, D., Møller, T. C., Ster, J., Giraldo, J., Maurel, D., Rovira, X., Scholler, P., Zwier, J. M., Perroy, J., Durroux, T., Trinquet, E., Prezeau, L., Rondard, P., & Pin, J.-P. (2017). Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells. eLife, 6, e25233.

    Article  Google Scholar 

  • Morgans, C. W., Brown, R. L., & Duvoisin, R. M. (2010). TRPM1: The endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells. Bioessays, 32(7), 609–614.

    Article  Google Scholar 

  • Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1993). Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. Journal of Biological Chemistry, 268, 11868–11873.

    Article  Google Scholar 

  • Opere, C. A., Heruye, S., Njie-Mbye, Y. F., Ohia, S. E., & Sharif, N. A. (2018). Regulation of excitatory amino acid transmission in the retina: Studies on neuroprotection. Journal of Ocular Pharmacology and Therapeutics, 34(1–2), 107–118.

    Article  Google Scholar 

  • Osborne, N. N. (2009). Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmologica, 87(4), 450–454.

    Article  Google Scholar 

  • Parsons, C. G., Danysz, W., & Quack, G. (1999). Memantine is a clinically well tolerated N-methyl--aspartate (NMDA) receptor antagonist – A review of preclinical data. Neuropharmacology, 38(6), 735–767.

    Article  Google Scholar 

  • Pignataro, L., Sitaramayya, A., Finnemann, S. C., & Sarthy, V. P. (2005). Nonsynaptic localization of the excitatory amino acid transporter 4 in photoreceptors. Molecular and Cellular Neurosciences, 28(3), 440–451.

    Article  Google Scholar 

  • Quraishi, S., Gayet, J., Morgans, C. W., & Duvoisin, R. M. (2007). Distribution of group-III metabotropic glutamate receptors in the retina. Journal of Comparative Neurology, 501(6), 931–943.

    Article  Google Scholar 

  • Quraishi, S., Reed, B. T., Duvoisin, R. M., & Taylor, W. R. (2010). Selective activation of mGluR8 receptors modulates retinal ganglion cell light responses. Neuroscience, 166(3), 935–941.

    Article  Google Scholar 

  • Rauen, T., Taylor, W. R., Kuhlbrodt, K., & Wiessner, M. (1997). High-affinity glutamate transporters in the rat retina: A major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell and Tissue Research, 291(1), 19–31.

    Article  Google Scholar 

  • Reed, B. T., Morgans, C. W., & Duvoisin, R. M. (2012). Differential modulation of retinal ganglion cell light responses by orthosteric and allosteric metabotropic glutamate receptor 8 compounds. Neuropharmacology, 67, 88–94.

    Article  Google Scholar 

  • Reiner, A., & Levitz, J. (2018). Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 98(6), 1080–1098.

    Article  Google Scholar 

  • Salt, T. E., & Cordeiro, M. F. (2006). Glutamate excitotoxicity in glaucoma: Throwing the baby out with the bathwater? Eye, 20, 730–731.

    Article  Google Scholar 

  • Sánchez-López, E., Egea, M. A., Davis, B. M., Guo, L., Espina, M., Silva, A. M., Calpena, A. C., Souto, E. M. B., Ravindran, N., Ettcheto, M., Camins, A., García, M. L., & Cordeiro, M. F. (2018). Memantine-loaded PEGylated biodegradable nanoparticles for the treatment of glaucoma. Small, 14(2), n/a-n/a.

    Google Scholar 

  • Schuettauf, F., Naskar, R., Vorwerk, C. K., Zurakowski, D., & Dreyer, E. B. (2000). Ganglion cell loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors. Investigative Ophthalmology and Visual Science, 41(13), 4313–4316.

    Google Scholar 

  • Shigeri, Y., Seal, R. P., & Shimamoto, K. (2004). Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Research Reviews, 45(3), 250–265.

    Article  Google Scholar 

  • Slaughter, M. M. (2010). Glutamate receptors in retina. In Encyclopedia of the eye (pp. 222–226). A. D. Editor-in-Chief: Darlene. Oxford: Academic Press.

    Google Scholar 

  • Tsoka, P., Barbisan, P. R., Kataoka, K., Chen, X. N., Tian, B., Bouzika, P., Miller, J. W., Paschalis, E. I., & Vavvas, D. G. (2019). NLRP3 inflammasome in NMDA-induced retinal excitotoxicity. Experimental Eye Research, 181, 136–144.

    Article  Google Scholar 

  • Ward, M. M., Jobling, A. I., Puthussery, T., Foster, L. E., & Fletcher, E. L. (2004). Localization and expression of the glutamate transporter, excitatory amino acid transporter 4, within astrocytes of the rat retina. Cell and Tissue Research, 315(3), 305–310.

    Article  Google Scholar 

  • Wassle, H. (2004). Parallel processing in the mammalian retina. Nature Reviews. Neuroscience, 5(10), 747–757.

    Article  Google Scholar 

  • Watkins, J. C., & Evans, R. H. (1981). Excitatory amino acid transmitters. Annual Review of Pharmacology and Toxicology, 21, 165–204.

    Article  Google Scholar 

  • Waxman, E. A., & Lynch, D. R. (2005). N-methyl-D-aspartate receptor subtypes: Multiple roles in excitotoxicity and neurological disease. The Neuroscientist, 11(1), 37–49.

    Article  Google Scholar 

  • Weinreb, R. N., & Khaw, P. T. (2004). Primary open-angle glaucoma. The Lancet, 363(9422), 1711–1720.

    Article  Google Scholar 

  • Weinreb, R. N., Liebmann, J. M., Cioffi, G. A., Goldberg, I., Brandt, J. D., Johnson, C. A., Zangwill, L. M., Schneider, S., Badger, H., & Bejanian, M. (2018). Oral memantine for the treatment of glaucoma: Design and results of 2 randomized, placebo-controlled, phase 3 studies. Ophthalmology, 125(12), 1874–1885.

    Article  Google Scholar 

  • Wersinger, E., Schwab, Y., Sahel, J. A., Rendon, A., Pow, D. V., Picaud, S., & Roux, M. J. (2006). The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. Journal of Physiology (London), 577, 221–234.

    Article  Google Scholar 

  • WoldeMussie, E., Yoles, E., Schwartz, M., Ruiz, G., & Wheeler, L. A. (2002). Neuroprotective effect of memantine in different retinal injury models in rats. Journal of Glaucoma, 11(6), 474–480.

    Article  Google Scholar 

  • Xiang, Z., Bao, Y., Zhang, J., Liu, C., Xu, D., Liu, F., Chen, H., He, L., Ramakrishna, S., Zhang, Z., Vardi, N., & Xu, Y. (2018). Inhibition of non-NMDA ionotropic glutamate receptors delays the retinal degeneration in rd10 mouse. Neuropharmacology, 139, 137–149.

    Article  Google Scholar 

  • Yap, T. E., Donna, P., Almonte, M. T., & Cordeiro, M. F. (2018). Real-time imaging of retinal ganglion cell apoptosis. Cells, 7(6), 60.

    Article  Google Scholar 

  • Yee, C. W., Ivanova, E., Toychiev, A. H., Willis, D. E., & Sagdullaev, B. T. (2018). Atypical expression and activation of GluN2A- and GluN2B-containing NMDA receptors at ganglion cells during retinal degeneration. Neuroscience, 393, 61–72.

    Article  Google Scholar 

  • Yucel, Y. H., Gupta, N., Zhang, Q., Mizisin, A. P., Kalichman, M. W., & Weinreb, R. N. (2006). Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Archives of Ophthalmology, 124(2), 217–225.

    Article  Google Scholar 

  • Yuzaki, M., & Aricescu, A. R. (2017). A GluD coming-of-age story. Trends in Neurosciences, 40(3), 138–150.

    Article  Google Scholar 

  • Zeitz, C., Forster, U., Neidhardt, J., Feil, S., Kalin, S., Leifert, D., Flor, P. J., & Berger, W. (2007). Night blindness-associated mutations in the ligand-binding, cysteine-rich, and intracellular domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Human Mutation, 28(8), 771–780.

    Article  Google Scholar 

  • Zhang, J., & Diamond, J. S. (2009). Subunit- and pathway-specific localization of NMDA receptors and scaffolding proteins at ganglion cell synapses in rat retina. The Journal of Neuroscience, 29(13), 4274–4286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Salt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Salt, T.E. (2022). Glutamate and Neurodegeneration in the Retina. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_172

Download citation

Publish with us

Policies and ethics