Skip to main content

SpecRepair: Counter-Example Guided Safety Repair of Deep Neural Networks

  • Conference paper
  • First Online:
Model Checking Software (SPIN 2022)

Abstract

Deep neural networks (DNNs) are increasingly applied in safety-critical domains, such as self-driving cars, unmanned aircraft, and medical diagnosis. It is of fundamental importance to certify the safety of these DNNs, i.e. that they comply with a formal safety specification. While safety certification tools exactly answer this question, they are of no help in debugging unsafe DNNs, requiring the developer to iteratively verify and modify the DNN until safety is eventually achieved. Hence, a repair technique needs to be developed that can produce a safe DNN automatically. To address this need, we present SpecRepair, a tool that efficiently eliminates counter-examples from a DNN and produces a provably safe DNN without harming its classification accuracy. SpecRepair combines specification-based counter-example search and resumes training of the DNN, penalizing counter-examples and certifying the resulting DNN. We evaluate SpecRepair’s effectiveness on the ACAS Xu benchmark, a DNN-based controller for unmanned aircraft, and two image classification benchmarks. The results show that SpecRepair is more successful in producing safe DNNs than comparable methods, has a shorter runtime, and produces safe DNNs while preserving their classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/NeuralNetworkVerification/Marabou/issues/494.

References

  1. Bauer-Marquart, F., Boetius, D., Leue, S., Schilling, C.: SpecRepair: counter-example guided safety repair of deep neural networks - supplementary material (2022)

    Google Scholar 

  2. Chen, J., Jordan, M.I., Wainwright, M.J.: HopSkipJumpAttack: a query-efficient decision-based attack. In: IEEE Symposium on Security and Privacy, pp. 1277–1294. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00045

  3. Cheng, C.: Provably-robust runtime monitoring of neuron activation patterns. In: DATE, pp. 1310–1313. IEEE (2021). https://doi.org/10.23919/DATE51398.2021.9473957

  4. Djavanshir, G.R., Chen, X., Yang, W.: A review of artificial intelligence’s neural networks (deep learning) applications in medical diagnosis and prediction. IT Prof. 23(3), 58–62 (2021)

    Article  Google Scholar 

  5. Dong, G., Sun, J., Wang, X., Wang, X., Dai, T.: Towards repairing neural networks correctly. In: QRS, pp. 714–725. IEEE (2021)

    Google Scholar 

  6. Endres, S.C., Sandrock, C., Focke, W.W.: A simplicial homology algorithm for Lipschitz optimisation. J. Global Optim. 72(2), 181–217 (2018). https://doi.org/10.1007/s10898-018-0645-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev, M.T.: DL2: training and querying neural networks with logic. In: ICML, Proceedings of Machine Learning Research, vol. 97, pp. 1931–1941. PMLR (2019)

    Google Scholar 

  8. Goldberger, B., Katz, G., Adi, Y., Keshet, J.: Minimal modifications of deep neural networks using verification. In: LPAR, EPiC Series in Computing, vol. 73, pp. 260–278. EasyChair (2020)

    Google Scholar 

  9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (Poster) (2015)

    Google Scholar 

  10. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep learning. In: Adaptive Computation and Machine Learning. MIT Press (2016). ISBN 978-0-262-03561-3. http://www.deeplearningbook.org/

  11. Goodfellow, I.J., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  12. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based monitoring of neural networks. In: ECAI, FAIA, vol. 325, pp. 2433–2440. IOS Press (2020). https://doi.org/10.3233/FAIA200375

  13. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  14. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270 (2020)

    Google Scholar 

  15. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–10. IEEE (2016)

    Google Scholar 

  16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  17. Katz, G., et al.: The Marabou framework for verification and analysis of deep neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_26

    Chapter  Google Scholar 

  18. Kochenderfer, M.J., Wheeler, T.A.: Algorithms for Optimization. MIT Press, Cambridge (2019)

    Google Scholar 

  19. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  20. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software Eng. 3(2), 125–143 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  22. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  23. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.: Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–404 (2021)

    Article  Google Scholar 

  24. Lukina, A., Schilling, C., Henzinger, T.A.: Into the unknown: active monitoring of neural networks. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 42–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9_3

    Chapter  Google Scholar 

  25. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (Poster) (2018). OpenReview.net

  26. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for provably robust neural networks. In: International Conference on Machine Learning (ICML) (2018). https://www.icml.cc/Conferences/2018/Schedule?showEvent=2477

  27. Moon, S., An, G., Song, H.O.: Parsimonious black-box adversarial attacks via efficient combinatorial optimization. In: ICML, PMLR, vol. 97, pp. 4636–4645 (2019). http://proceedings.mlr.press/v97/moon19a.html

  28. Onishi, T., Motoyoshi, T., Suga, Y., Mori, H., Ogata, T.: End-to-end learning method for self-driving cars with trajectory recovery using a path-following function. In: IJCNN, pp. 1–8. IEEE (2019)

    Google Scholar 

  29. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. In: POPL, vol. 3, pp. 41:1–41:30 (2019). https://doi.org/10.1145/3290354

  30. Smith, A.E., Coit, D.W., Baeck, T., Fogel, D., Michalewicz, Z.: Penalty functions. In: Handbook of Evolutionary Computation, vol. 97, no. (1), C5 (1997)

    Google Scholar 

  31. Sotoudeh, M., Thakur, A.V.: Provable repair of deep neural networks. In: PLDI, pp. 588–603. ACM (2021)

    Google Scholar 

  32. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014). http://arxiv.org/abs/1312.6199

  33. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Păsăreanu, C.S.: NNrepair: constraint-based repair of neural network classifiers. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 3–25. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_1

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was partly supported by DIREC - Digital Research Centre Denmark and the Villum Investigator Grant S4OS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Bauer-Marquart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer-Marquart, F., Boetius, D., Leue, S., Schilling, C. (2022). SpecRepair: Counter-Example Guided Safety Repair of Deep Neural Networks. In: Legunsen, O., Rosu, G. (eds) Model Checking Software. SPIN 2022. Lecture Notes in Computer Science, vol 13255. Springer, Cham. https://doi.org/10.1007/978-3-031-15077-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15077-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15076-0

  • Online ISBN: 978-3-031-15077-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics