Skip to main content

The Olivocerebellar Tract

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders
  • 102 Accesses

Abstract

Neurons in the inferior olive nucleus, the sole origin of cerebellar climbing fibers, project their axons to the cerebellum through the olivocerebellar tract. A single olivocerebellar axon gives rise to multiple climbing fibers (about seven in rats), which often terminate into a single longitudinal compartment defined by the cerebellar cortex’s longitudinal striped molecular expression pattern. According to an intriguing topographic relationship, axons originating from a subarea of the inferior olive project to a particular compartment. As a result of this topographic arrangement, the olivocerebellar projection relays synchronous activity of the electrically coupled adjacent inferior olive neurons to complex spike firing of Purkinje cells in a longitudinal compartment. Olivocerebellar axons show a dynamic morphogenetic process. An immature axon has abundant terminal branches that innervate many Purkinje cells. Several terminal branches (climbing fibers) grow to eventually establish a powerful one-to-one synaptic connection between a single climbing fiber terminal and a single target Purkinje cell. Furthermore, these axons are capable of strong compensatory re-innervation after lesion, even in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki H, Sugihara I (2012) Morphology of single olivocerebellar axons in the denervation–reinnervation model produced by subtotal lesion of the rat inferior olive. Brain Res 1449:24–37

    Article  CAS  PubMed  Google Scholar 

  • Biswas MS, Luo Y, Sarpong GA, Sugihara I (2019) Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. J Comp Neurol 527:1966–1985

    Article  CAS  PubMed  Google Scholar 

  • Blenkinsop TA, Lang EJ (2011) Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci 31:14708–14720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552

    Article  CAS  PubMed  Google Scholar 

  • Chédotal A, Sotelo C (1992) Early development of olivocerebellar projections in the fetal rat using CGRP immunocytochemistry. Eur J Neurosci 4:1159–1179

    Article  PubMed  Google Scholar 

  • Dixon KJ, Sherrard RM (2006) Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells. Exp Neurol 202:44–56

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Llinás R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182:268–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita H, Sugihara I (2012) FoxP2 expression in the cerebellum and inferior olive: development of the transverse stripe-shaped expression pattern in the mouse cerebellar cortex. J Comp Neurol 520:656–677

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Morita N, Furuichi T, Sugihara I (2012) Clustered fine compartmentalization of the mouse embryonic cerebellar cortex and its rearrangement into the postnatal striped configuration. J Neurosci 32:15688–15703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita H, Aoki H, Ajioka I, Yamazaki M, Abe M, Oh-Nishi A, Sakimura K, Sugihara I (2014) Detailed expression pattern of aldolase C (Aldoc) in the cerebellum, retina and other areas of the CNS studied in Aldoc-Venus knock-in mice. PLoS One 9:e86679

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita H, Kodama T, du Lac S (2020) Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. Elife 9:e58613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horn KM, Pong M, Gibson AR (2010) Functional relations of cerebellar modules of the cat. J Neurosci 30:9411–9423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang EJ, Sugihara I, Welsh JP, Llinás R (1999) Patterns of spontaneous complex spike activity in the awake rat. J Neurosci 19:2728–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leznik E, Llinás R (2005) Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J Neurophys 94:2447–2456

    Article  Google Scholar 

  • Llinás R, Yarom Y (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 376:163–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Long MA, Deans MR, Paul DL, Connors BW (2002) Rhythmicity without synchrony in the electrically uncoupled inferior olive. J Neurosci 22:10898–10905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marthy A, Ho SSN, Davie JT, Duguid IC, Clark BA, Häusser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62:388–399

    Article  Google Scholar 

  • Ramón y Cajal S (1911) Histologie du système nerveux de l’homme et des verébrés, vol 2. Maloine, Paris

    Google Scholar 

  • Rossi F, Wiklund L, Van der Want JJL, Strata P (1991) Reinnervation of cerebellar Purkinje cells by climbing fibers surviving a subtotal lesion of the inferior olive in the adult rat. I. Development of new collateral branches and terminal plexuses. J Comp Neurol 308:513–535

    Article  CAS  PubMed  Google Scholar 

  • Ruigrok TJ (2011) Ins and outs of cerebellar modules. Cerebellum 10:464–474

    Article  PubMed  Google Scholar 

  • Ruigrok TJ, Voogd J (1990) Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris leucoagglutinin (PHA-L). J Comp Neurol 298:315–333

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Bower JM, Llinás R (1989) Multiple Purkinje cell recording in rodent cerebellar cortex. Eur J Neurosci 1:572–586

    Article  PubMed  Google Scholar 

  • Sugihara I (2005) Microzonal projection and climbing fiber remodeling in single olivocerebellar axons of new born rats at postnatal days 4–7. J Comp Neurol 487:93–106

    Article  PubMed  Google Scholar 

  • Sugihara I, Quy PN (2007) Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol 500:1076–1092

    Article  CAS  PubMed  Google Scholar 

  • Sugihara I, Shinoda Y (2004) Molecular, topographic and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labelling. J Neurosci 24:8771–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Shinoda Y (2007) Molecular, topographic and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. J Neurosci 27:9696–9710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Lang EJ, Llinás R (1993) Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. J Physiol Lond 470:243–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Wu H-S, Shinoda Y (1999) Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol 414:131–148

    Article  CAS  PubMed  Google Scholar 

  • Sugihara I, Bailly Y, Mariani J (2000) Olivocerebellar climbing fibers in the granuloprival cerebellum: morphological study of individual axonal projections in the X-irradiated rat. J Neurosci 20:3745–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Wu H-S, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21:7715–7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara I, Lohof AM, Letellier M, Mariani J, Sherrard RM (2003) Post-lesion transcommissural growth of olivary climbing fibres creates functional synaptic microzones. Eur J Neurosci 18:3027–3036

    Article  PubMed  Google Scholar 

  • Sugihara I, Ebata S, Shinoda Y (2004) Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. J Comp Neurol 470:113–133

    Article  PubMed  Google Scholar 

  • Sugihara I, Marshall SP, Lang EJ (2007) Relationship of complex spike synchrony bands and climbing fiber projection determined by reference to aldolase C compartments in crus IIa of the rat cerebellar cortex. J Comp Neurol 501:13–29

    Article  CAS  PubMed  Google Scholar 

  • Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D (2009) Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol 512:282–304

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi S, Hidaka N, Isomura Y, Matsuzaki M, Sakimura K, Kano M, Kitamura K (2019) Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. eLife 8:e47021

    Article  PubMed  PubMed Central  Google Scholar 

  • Voogd J, Bigaré F (1980) Topographical distribution of olivary and corticonuclear fibers in the cerebellum: a review. In: Courville J, de Montigny C, Lamarre Y (eds) The inferior olivary nucleus anatomy and physiology. Raven Press, New York, pp 207–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izumi Sugihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y., Sugihara, I. (2023). The Olivocerebellar Tract. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_6

Download citation

Publish with us

Policies and ethics