Skip to main content

Restoring a Loss of Mossy Fiber Plasticity in a Model of Fragile X Syndrome

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders
  • 63 Accesses

Abstract

Fragile X Syndrome is a monogenic disorder that reflects a loss of Fragile X Mental Retardation Protein (FMRP) that is needed to regulate translation of proteins important to circuit development and plasticity. A complete loss of FMRP is the leading monogenic cause of Autism Spectrum Disorders (ASD). Mossy fiber inputs to cerebellar granule cells exhibit long-term potentiation (LTP) to process sensory information to the cerebellum. Here we find that LTP of mossy fiber input is lost in FMRP KO mice. To counter this loss, we reintroduced an FMRP N-terminal fragment conjugated to a tat peptide (FMRP-N-tat) by tail vein injection. This action promoted transport of FMRP(1–297) across the blood–brain barrier to distribute widely across the brain within 30 min and rescued LTP at the mossy fiber-granule cell synapse. These findings are important in revealing that tat-conjugated FMRP fragments can be used as a therapeutic tool to restore synaptic plasticity and reduce symptoms of Fragile X Syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377

    Article  CAS  PubMed  Google Scholar 

  • Contractor A, Klyachko VA, Portera-Cailliau C (2015) Altered neuronal and circuit excitability in Fragile X syndrome. Neuron 87:699–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo E, Rossi P, Gall D et al (2005) Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res 148:69–80

    Article  PubMed  Google Scholar 

  • Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferron L (2016) Fragile X mental retardation protein controls ion channel expression and activity. J Physiol 594:5861–5867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferron L, Novazzi CG, Pilch KS et al (2020) FMRP regulates presynaptic localization of neuronal voltage gated calcium channels. Neurobiol Dis 138:104779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gholizadeh S, Arsenault J, Xuan IC et al (2014) Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. Neuropsychopharmacology 39:3100–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gholizadeh S, Halder SK, Hampson DR (2015) Expression of fragile X mental retardation protein in neurons and glia of the developing and adult mouse brain. Brain Res 1596:22–30

    Article  CAS  PubMed  Google Scholar 

  • Graef JD, Wu H, Ng C et al (2019) Partial FMRP expression is sufficient to normalize neuronal hyperactivity in Fragile X neurons. Eur J Neurosci. https://doi.org/10.1111/ejn.14660

  • Hampson DR, Blatt GJ (2015) Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci 9:420

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorntell H, Hansel C (2006) Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52:227–238

    Article  PubMed  Google Scholar 

  • Koekkoek SK, Yamaguchi K, Milojkovic BA et al (2005) Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47:339–352

    Article  CAS  PubMed  Google Scholar 

  • Leibrand CR, Paris JJ, Ghandour MS et al (2017) HIV-1 Tat disrupts blood-brain barrier integrity and increases phagocytic perivascular macrophages and microglia in the dorsal striatum of transgenic mice. Neurosci Lett 640:136–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Wu H, Krzisch M et al (2018) Rescue of Fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172:979–992.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CY, Halevy T, Lee DR et al (2015) Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell Rep 13:234–241

    Article  CAS  PubMed  Google Scholar 

  • Piochon C, Kloth AD, Grasselli G et al (2014) Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism. Nat Commun 5:5586

    Article  CAS  PubMed  Google Scholar 

  • Protic D, Salcedo-Arellano MJ, Dy JB et al (2019) New targeted treatments for fragile X syndrome. Curr Pediatr Rev 15:251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis SA, Willemsen R, van Unen L et al (2004) Prospects of TAT-mediated protein therapy for fragile X syndrome. J Mol Histol 35:389–395

    Article  CAS  PubMed  Google Scholar 

  • Rizwan AP, Zhan X, Zamponi GW, Turner RW (2016) Long-term potentiation at the mossy fiber-granule cell relay invokes postsynaptic second-messenger regulation of Kv4 channels. J Neurosci 36:11196–11207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sgritta M, Locatelli F, Soda T et al (2017) Hebbian spike-timing dependent plasticity at the cerebellar input stage. J Neurosci 37:2809–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoodley CJ, D’Mello AM, Ellegood J et al (2017) Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci 20:1744–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telias M (2019) Molecular mechanisms of synaptic dysregulation in fragile X syndrome and autism Spectrum disorders. Front Mol Neurosci 12:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SS, Kloth AD, Badura A (2014) The cerebellum, sensitive periods, and autism. Neuron 83:518–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y-M, Arsenault J, Bah A et al (2018) Identification of a molecular locus for normalizing dysregulated GABA release from interneurons in the fragile X brain. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0240-0

  • Zangenehpour S, Cornish KM, Chaudhuri A (2009) Whole-brain expression analysis of FMRP in adult monkey and its relationship to cognitive deficits in fragile X syndrome. Brain Res 1264:76–84

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Asmara H, Cheng N et al (2020) FMRP(1-297)-tat restores ion channel and synaptic function in a model of fragile X syndrome. Nat Commun 11:2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray W. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhan, X., Turner, R.W. (2023). Restoring a Loss of Mossy Fiber Plasticity in a Model of Fragile X Syndrome. In: Gruol, D.L., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J.D., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-15070-8_48

Download citation

Publish with us

Policies and ethics